
Specifying the Remote Controlling of Valves

in an Explosion Test Environment

Martin Sch�onho�? and Mojgan Kowsari??

Technical University of Braunschweig, Computer Science, Databases,

Postfach 3329, D{38023 Braunschweig, Germany,

email: M.Kowsari@tu-bs.de

Abstract. We present parts of the speci�cation of a program to remote

control and monitor di�erent devices, especially valves, in an explosion

test environment. The program was developed within an industrial na-

tional project called CATC carried out in PTB, the German federal

institute of weights and measures. The CATC information system sup-

ports various activities of di�erent user groups that are responsible for

testing and certifying explosion proof electrical equipment in PTB. Our

approach is based on the formal object-oriented speci�cation language

Troll. We describe the advantages of the use of the formal method in

our project.

1 Introduction

In the past few years, there has been considerable activity in the area of mod-

elling large information systems. Many industrial methods have been developed

for every platform and for di�erent users, local or in networks. But they do

not reach the level of formality achieved by formal speci�cation languages. One

main problem remains when designing a real world aspect: \Do we get what

we need?" There is a small but growing community of people who propose and

promote formal methods in software engineering [BH94]. The acceptance of for-

mal methods in industry is still low. This is mainly due to the fact that formal

methods are thought to be complex, hard to handle, and not suitable for real

world applications [FBGL94, BH95].

In this paper, we present our experiences with the formal speci�cation lan-

guage Troll, gained while using Troll to design a large information system

in an industrial environment [KHDE96, KKH+96, Kow96]. Troll helps to dis-

cover and eliminate ambiguities and vaguenesses in the modelling phases. When

we started our project in 1994, no formal method was applied. Soon some prob-

lems arose [HS94], and mid 1995, we became aware that the project was already

? Now at University of Zurich, Department of Computer Science, Database Tech-

nology Research Group, Winterthurerstr. 190, CH{8057 Zurich, Switzerland, email:

mschoen@i�.unizh.ch
?? Work reported in this paper is supported by the Physical Technical Federal Board,

lab 3.51, project Computer Aided Testing and Certifying

likely to fail. One of the problems of informal methods we encountered was that

they require the designer to think about implementation aspects. However, our

application domain and its data are too complex to mix design and implemen-

tation without loosing the global view of the system. Hence, we decided to use a

formal approach. Using formalism allows us to concentrate more on the data and

data structure and to determine what the system has to do under exceptional

circumstances. Due to safety-critical aspects of our problem domain, emphasis

on this point was especially important and useful in the process of requirement

acquisition of the remote controlling of the valves.

The Troll approach incorporates many ideas which have been developed

over the past eight years.Troll supports the declarative speci�cation of concep-

tual models. Troll de�nes an abstract model called the Universe of Discourse

to cover all aspects which are relevant with respect to organisational activities

in complex information systems. It includes the functional requirements of the

later system and excludes non-functional requirements (like technology bindings

of later implementations).

The remainder of this paper is structured as follows. Section 2 provides a

summary of the concepts of Troll. In Sect. 3, we give a short introduction to the

problem domain of testing electrical apparatus in
ameproof enclosures. Some

of the requirements for VENTIL are presented in Sect. 4, while Sect. 5 shows the

resulting Troll speci�cation. Our experiences are discussed in Sect. 6. Finally,

Sect. 7 concludes the paper.

2 Troll

In this section, we give a short introduction to the speci�cation language Troll.

Troll (\Textual Representations of an Object Logical Language") is a for-

mal language for the speci�cation of object systems on a high level of abstraction.

The basic ideas and concepts of Troll can be summarised as follows:

{ The basic building blocks of information systems are objects.

{ Objects are classi�ed into classes and described by a set of attributes and

actions.

{ Every object describes a set of sequential life cycles, i.e. sequences of local

actions on the object.

{ An object system is composed of a number of concurrent objects. These

objects are the nodes of the system. Nodes usually have other objects as

components. To establish global communication in an object system, nodes

can be connected through global interactions.

The following are the basic features of the language:

{ A system speci�cation consists of a set of data type de�nitions, a set of object

class speci�cations (prototypical object descriptions), and a number of object

declarations.

{ Parameterised data types allow for the construction of new data types based

on a �xed universe of prede�ned data types.

{ An object class speci�cation is a set of attributes, actions, and constraints.

{ Object classes may be constructed over other object classes (aggregation) to

describe complex objects, i.e. objects which contain component objects.

{ An object class may be the specialisation of another object class. The spe-

cialised class (subclass) may have properties in addition to those inherited

from its superclass.

{ Concurrent objects are declared over object classes. These declarations de-

scribe the potential objects in the system. Interactions (through action calls)

between di�erent objects describe the global synchronisation relations. All

actions which are called within one event are understood to take place con-

currently. Action parameters are exchanged through uni�cation.

The case study which will be introduced in Sect. 4 illustrates some of the

language features. For more details, see [Har97, DH97].

Semantics are assigned to Troll speci�cations using di�erent techniques:

The static structure of an object system is semantically described with algebraic

methods, statements over object states are expressed with a logic calculus, and

the dynamic structure of the system, i.e. its evolution, is re
ected via a temporal

logic which is interpreted in terms of event structures. For an exhaustive descrip-

tion of the underlying theory, semantics, and logics see [Ehr96, ES95, EH96], for

the re�nement of object speci�cations refer to [Den96, Den95].

3 Problem Domain

In this section, we provide a short introduction to the application domain. We

o�er basic information about electrical apparatus in
ameproof enclosures and

the explosion test environment needed to certify them.

The Physical Technical Federal Board (PTB) [RBH87] is a federal institute

for science and technology and the highest technical authority for metrology and

physical safety in Germany. Its tasks are research in physics and technology, real-

isation and dissemination of SI units3, cooperation in national and international

technical committees, physical safety engineering serving against explosions, etc.

The PTB's group 3.5 \explosion protected electrical equipment" is concerned

with the testing and certifying of explosion proof electrical equipment. Such

equipment may only be used in hazardous areas after it has been approved and

certi�ed following the harmonised European standards EN 50014{50028. The

assessment procedure consists of testing the formal and informal documents,

checking the design papers (technical drawings) and experimental tests (such as

explosion,
ame propagation, and thermal-electrical tests). Currently, all steps

which are necessary during the testing procedure and the issuing of about 1000

certi�cates each year are carried out manually and individually by the approx-

imately 100 employees who make up the three labs of group 3.5. Because of

3 international system of units

the huge amount of data, a standardised archive and catalogue of all existing

certi�cates of explosion proof equipment is planned. It will be integrated into a

software package called CATC (Computer Aided Testing and Certifying). Since

1994, the design and modelling of CATC is the long-term aim of the coopera-

tion between the PTB and the database group of the Technical University of

Braunschweig.

CATC has to support three di�erent problem domains: administration man-

agement, design approval, and experimental tests, which are performed in a test

lab. CATC is not a standalone information system, but it has to be embedded

into an existing environment. Besides, we have to deal with existing application

programs which have to be re-speci�ed because they are erroneous. These re-

speci�ed parts have to be embedded into the new information system structure.

In addition, there is a link to the frequently accessed PTB-wide database. To

summarise, we have a safety-critical application area that comprises both tech-

nical and database aspects in a complex heterogeneous environment as well as

existing and re-developed applications.

4 Requirements for VENTIL

This section focuses on some requirements for VENTIL4, a program to remote

control and monitor explosion test stands in the test lab of group 3.51. It is a

part of the experimental test software of CATC. PTB's group 3.51 deals with

the certi�cation of electrical apparatus in
ameproof enclosures according to

the standards EN 50014 and EN 50018 [EN 87a, EN 87b] (motors, pumps, and

switches, for instance). For
ameproof enclosure, all parts which can ignite an

explosive atmosphere are placed in an enclosure. In the case of an explosion in-

side, the enclosure withstands the pressure developed and prevents the transition

of the explosion to the surrounding explosive atmosphere. The critical places for

explosion transition are the joints, the places where corresponding surfaces of

two parts of an enclosure come together and therefore a gap arises. For a
ame-

proof enclosure, each gap must be narrow enough so that only
ameproof joints

are formed [ORW83].

Consequently,
ameproof joint tests are among the experiments undertaken

in the test lab to certify
ameproof enclosures [EN 87b]. In a
ameproof joint test

(Fig. 1), a prototype (2) is placed inside the test chamber (1, called an autoclave)

of an explosion test stand and is �lled with an explosive atmosphere (eA). Then,

a spark (S) ignites the atmosphere inside the enclosure. A prototype passes the

test if the enclosure withstands the developing pressure and temperature (�C)

and the explosion does not continue into the autoclave.

The main equipment of an explosion test stand are a gas source, the auto-

clave, analysis tools, pumps, and valves. All of these devices are connected in a

4 This is German for \valve". The name originates from the previously used program

which only let the user open and close valves. The name VENTIL was kept for the

newly developed application because of habit.

eA
S

°C
eA

Pressure

Pressure

JointJoint

2

1

Fig. 1. Flameproof joint test.

net of tubes and pipes. Figure 2 shows a schematic view of the smallest explosion

test stand in the test lab, the so called Ex{Eva5. VENTIL is used to control and

monitor most of the devices of the Ex{Eva in order to create explosive atmo-

spheres in the autoclave. The actual measuring of explosion pressure during an

experiment is done separately [Hoh96, Sch96a].

Besides the obvious tasks to let users (i.e. the testers) mix gases, open, close,

and monitor valves, turn on and o� pumps, etc., VENTIL provides two more

advanced features: the automatic observance of dependencies between devices

and the calculation of the gas
ow.

4.1 Observance of Dependencies

VENTIL prevents testers from accidently violating dependencies between devices.

Dependencies are rules which have to be observed to protect the equipment and

the environment (including the testers themselves) of the explosion test stand.

The dependencies can be formulated as a kind of \master-slave" functions |

one device depends on the state or state change of one or more other device(s).

These example dependencies (to which we will refer throughout Subsect. 5.2)

are needed to protect the fragile oxygen analyser of the Ex{Eva (cf. Fig. 2) from

extreme pressure and soot developed in the autoclave during an explosion:

1. Valve 31 may be open if and only if valve 26 is open.

2. (a) Before valve 31 is opened, valve 34 is opened automatically.

(b) Before valve 34 is opened, valve 35 is opened automatically.

(c) One second after valve 31 has been closed, valve 34 is closed automati-

cally.

(d) After valve 34 has been closed, valve 35 is closed automatically.

5 Explosions{Versuchs Anlage (German for \explosion test stand")

exit to
atmosphere

exit to
atmosphere

sensor
pressure-stor-

age

vacuum
pump

analysis
pump

oxygen
analysis

V34

V31
V19

V11

V12

V10

gas mixer
gas

air

autoclave

prototype

V35
MESG

V17

V23

V30

V16

V24

V26

V29

V21

V20

Fig. 2. Schematic view of the Ex{Eva. Vxx denotes a valve.

4.2 Calculation of the Gas
ow

In a schematic display similar to the one of the Ex{Eva in Fig. 2, VENTIL o�ers

to the testers a calculated view of the gas
ow in the test stand. Unfortunately,

this calculation is not at all trivial, but depends on parameters like the expected

(yet not measured) gas pressure and the pumping direction of pumps. We will

not go into the details of the parameters, but we use signi�cantly simpli�ed

requirements for the visualisation of the gas
ow here:

{ A gas
ow may begin or end at any gas entry or exit point of the test stand

(e.g., the exit to the atmosphere) as well as at the gas mixer, reservoir,

autoclave, or pressure sensor (altogether referred to as endpoints).

{ There has to be an \open way" from one endpoint to another, i.e. all valves

need to be open and the pumps turned on in a gas
ow. All the other devices,

the oxygen analyser, for instance, do not in
uence the gas
ow and are treated

here simply like a pipe.

Nevertheless, these reduced requirements will still be su�cient to present

the implications of the gas
ow calculation as far as this paper is concerned. An

unabridged description is given in [Sch96b].

5 Speci�cation of VENTIL using Troll

The main components of the Troll speci�cation of VENTIL are presented in

this section. First, a general overview of the object hierarchy of the information

system node is given. Afterwards, the two most interesting parts of the speci�-

cation are treated in detail: the observance of dependencies and the calculation

of the gas
ow. The diagrams illustrating this section use a notation similar to

OMT [RBP+91] which was adapted to Troll [JWH+94, WJH+93].

5.1 Overview

The speci�cation of the VENTIL system is made up of three nodes (cf. Sect. 2),

namely the user, hardware, and information system nodes. The user node de-

scribes the possible behaviour of the di�erent user groups (testers, technicians,

etc.) and their interfaces to the main system. For instance, in the Tester6 object

class (which is a part of the user node) it is speci�ed that valves can be opened

and closed or what data must be provided for the gas mixer. These speci�cations

solely focus on functionality and data and are therefore abstractions of possible

implementations (like dialog boxes or other user interface elements). Digital out-

puts (e.g., \open valve"), digital and analogue sensors (\valve is open", voltage

representing measured pressure), etc. are modelled in the hardware node.

One merit of specifying VENTIL in Troll is the possibility to examine the

information system node isolated from the nodes describing user interaction

[Sch96b] and hardware behaviour [Hoh96]. In this paper, the latter nodes and

global interactions are not treated any further. We only discuss the speci�cation

of the information system node, beginning with the introduction of its object

classes in the remainder of this subsection. The Community Diagram in Fig. 3

gives an overview of the component and inheritance hierarchies used.

The Object Class Knot The calculation of the gas
ow requires the most com-

plex algorithm in VENTIL. Hence, the structure of the speci�cation has been

designed to suit this algorithm best. From Fig. 2 and the description in Sub-

sect. 4.2 it is rather obvious that a gas
ow can be formalised as a path in a

directed graph representing the explosion test stand. The nodes of the graph

stand for the devices7 of the test stand, and the vertices for its pipes8. Although

pipes are generally undirected, the graph's vertices need to be directed here,

because at one time gas can only
ow one way, determined by the pumping

directions of the pumps and the gas mixer.

All basic properties of a node in the graph are modelled in the abstract

(i.e. not instantiable) object class Knot. It is a superclass of any object class

6 Throughout this paper, we print all terms referring to the Troll speci�cation in

typewriter font and Troll keywords in italics.
7 Subsequently, devices also subsume the joins between two or more pipes, and the

entry and exit points of the test stand (e.g., the external gas supply).
8 To simplify reading, we will no longer distinguish tubes from pipes.

Immutable-
Knot

Digital-
OutputHWI

GasMixerHWI

ValveHWI

Knot

MESG

GasMixer

Valve

MESGHWI

MutableKnot

Pump

GasflowGraph

Pressure-
Sensor

Analogue-
SensorHWI

HWI

HWI

HWI

HWI
MESGs

Valves

Pumps

Mixers

PipeEnd

Storage

Autoclave

PipeJoin

Oxygen-
Analyser

HWI

O2Analysers

PSensors

Storages

Autoclaves

Joins

Ends

Fig. 3. Community Diagram of the information system node of VENTIL. The

triangles symbolise inheritance, the diamonds component relationships. The dots

are read as \zero or more" components.

representing a concrete device9. Hence, the devices become nodes of the graph,

but do not need to take care of their connections to other nodes or their behaviour

during the gas
ow calculations themselves. This is an excellent example for the

use of inheritance in Troll: Each device class inherits the basic properties of

a Knot. Evolution within these properties does not have any e�ect on object

classes apart from Knot, thus facilitating the maintenance of the speci�cation a

great deal. All devices (including those which may be added to the test stand in

future) reuse the speci�cation of Knot and are therefore modelled more quickly

and understandably. Furthermore, a Knot does not need to know which kinds of

devices it is connected to, because it does not need any specialised properties of

its neighbouring Knots.

Here is a part of the Troll speci�cation of Knot:

data type vertex = record(knot:|Knot|, flow:bool)

data type names = string(3)

data type switch = enum(activate, deactivate)

object class Knot

attributes Vertices: set(vertex) isConstant;

Type: enum(endpoint, through) isConstant;

Status: enum(closed, opening, open, closing);

Name: names;

9 While we are discussing the speci�cation of VENTIL, we will use the name of a

real-world object synonymous to its representing Troll object; e.g., by \valve 31",

we generally mean \the object representing valve 31 in the speci�cation". The few

exceptions are made clear through phrases like \the hardware of valve 31".

actions FindFlow(visited:set(|Knot|), flow:set(|Knot|),

! newFlow:set(|Knot|), ! success:bool);

FindFlowNo(no:nat, vertices:list(vertex), visited:set(|Knot|),

flow:set(|Knot|), ! newFlow:set(|Knot|), ! success:bool);

Switch(action:switch, ...) -- for the second parameter, see Subsect. 5.2

constraints cnt(Vertices) > 0,

cnt(Vertices) = cnt(toSet(select v.knot from v in Vertices)),

all vert in Vertices (vert.knot # self);

end;

We do not use a vertex object class in the speci�cation of VENTIL. It is

su�cient to keep a set of references to neighbouring Knots (together with a

ag denoting whether this vertex is in the gas
ow or not) to store outgoing

vertices10. The three constraints on Verticesmake sure for each Knot (i) that it

is connected to at least another one, (ii) that there are no two vertices to the same

Knot, and (iii) that there is no vertex to itself ((i) to (iii) are always ful�lled for

an explosion test stand). Subclasses of Knot add constraints according to their

specialised needs: A pump, for example, must always have one incoming and

one outgoing vertex to denote the pumping direction. Note how simple allowed

states of an object can be de�ned in Troll. Constraint (ii) also serves as one of

many examples in VENTIL where the power of the descriptive select statement

is exploited to yield a compact speci�cation.

The constant attribute Type speci�es whether a Knot is an endpoint of a

gas
ow or the
ow just runs through the Knot. The Status attribute stands for

the states di�erent devices may take. For a valve, openmeans it is open, opening

that it is no longer closed, but not yet open (due to the mechanical switching

delay) and so on. Figure 4a shows the Object Behaviour Diagram of Valve;

due to mechanical malfunction, any state transition is possible. The Status of

a pump can only be either open (turned on) or closed (turned o�) (Fig. 4b)

| enforced by a constraint. The Type and Status attributes and the actions

FindFlowNo and FindFlow are needed in the gas
ow calculation and are treated

in detail in Subsect. 5.3.

(c)

open

closed open

(b)

closing

opening

openclosed

(a)

Fig. 4. Object Behaviour Diagrams: (a) Valve, (b) Pump, (c) ImmutableKnot.

10 Specifying vertices is more complicated with the complete gas
ow algorithm (us-

ing gas pressure, cf. Subsect. 4.2), because the graph needs to be traversed along

incoming vertices as well. A direction part is added to the vertex data type and an

additional constraint is needed to control the resulting redundancy [Sch96b].

The enumeration switch generalises the notions of \opening a valve", \turn-

ing on a pump", etc. to activate and the respective counterparts to deactivate.

It is used as the �rst parameter to the action Switch which is overloaded in any

subclass of Knot to perform the required task for the individual subclass.

Finally, the Name is a user-de�ned identi�cation of a Knot. It is simply a

three character string like `V11' for valve 11. For every operation a user likes to

perform on a speci�c device, he inputs the Name to denote the device.

The Object Classes MutableKnot and ImmutableKnot Devices like the oxy-

gen analyser or pressure sensors cannot be manipulated through VENTIL. With

regard to their Status in the gas
ow, those devices are always open. They are

modelled as subclasses of the abstract object class ImmutableKnot which is a

subclass of Knot (see Fig. 3). ImmutableKnot constrains the Status to open

(Fig. 4c) and disables the inherited switching operation.

Devices that can be controlled by testers (e.g., valves, pumps) also have a

common abstract superclass, MutableKnot. Obviously, only MutableKnots may

need to observe dependencies, since only if the state of a device is mutable, it may

depend on the state of another device. Hence, the observance of dependencies is

handled in MutableKnot. See Subsect. 5.2.

The Device Object Classes The di�erent device classes of the test stand

are modelled as separate object classes in VENTIL. Each of these object classes

is a subclass of either MutableKnot or ImmutableKnot and hence indirectly a

subclass of Knot.

Several device object classes have components specifying hardware interfaces.

By convention, the names of hardware interface classes all end on HWI. For in-

stance, ValveHWI models the interface to an object class within the hardware

node of VENTIL. ValveHWI provides actions to open and close a valve, to check

the current status of the hardware, etc. A detailed introduction to the device and

hardware interface object classes of VENTIL is beyond the scope of this paper.

Refer to Fig. 3 for an overview and to [Sch96b] for details. However, it should be

mentioned that Troll served well in the description of HWI-classes which not

only form the interface to the real hardware, but also to the work of another

member of the CATC team [Hoh96].

The Object Class GasflowGraph The management of our graph and the

initiation of the gas
ow calculation is modelled in the object class GasflowGraph.

Here follows the part of its speci�cation relevant for this paper:

object class Gas
owGraph

components Valves: map (names) to (|Valve|);

Pumps: map (names) to (|Pump|);

...

attributes Knots: map (names) to (|Knot|) derived

Knots(name):= select knot from knot in dom(Valve)+dom(Pump)+...

where knot.Name = name;

actions Gasflow();

GasflowNo(no:nat, knots:list(|Knot|), flow:set(|Knot|),

! newFlow:set(|Knot|));

constraints all name in names (

cnt(select knot from knot in dom(Valves)+dom(Pumps)+...

where knot.Name = name) <= 1);

end;

In the components section, parametrised components are declared for each of

the device subclasses of Knot. The parameter domains are always the range of

possible names for Knots. In Troll, it is necessary to specify the exact class of

a component and not just one of its superclasses. It is therefore not possible to

have one parametrised component containing instances of any of the subclasses

of Knot. But since all names within a test stand are supposed to be unique even

for di�erent device classes, a well-de�ned map from names to Knots is required.

It is achieved through the constraint given above which states that each name

may appear at most once in the union of all domains (i.e. the actually existing

instances) of the parameterised components. Convenient access to the map from

names to Knots is provided through the derived attribute Knots. The two actions

Gasflow and GasflowNo initiate the search for gas
ows in the graph. They are

treated in detail in Subsect. 5.3.

5.2 Observance of Dependencies

Classi�cation of Dependencies The formalisation of dependencies (like those

of the examples in Subsect. 4.1) leads to the distinction of three types: static,

dynamic, and delayed dependencies11.

Static dependencies involve at most one state change in one device. This state

change depends on the state of another device which is only watched, but not

changed. Example 1 is a static dependency: Valve 31 may only be open if and

only if valve 26 is open.

Dynamic dependencies always involve the possibility of two state changes in

two devices, as fast as possible. From the point of view of one of the involved

devices, there are three possible executions of the own state change: before or

after the other device or both in parallel. Specifying the parallel and after cases

is straightforward. For the before case, we take a look at Example 2b, where

valve 35 must be opened before valve 34. The two following Troll events must

take place if valve 34 is commanded to open itself:

1. If valve 35 is already open, valve 34 opens and nothings else needs to be

done. Otherwise, valve 34 commands valve 35 to open.

2. As soon as the hardware of valve 35 is opened, its corresponding object is

noti�ed and commands valve 34 to open.

11 Following the vocabulary of the engineers in lab 3.51, there is also a fourth type

of \dependencies" in the original requirements analysis. But its formal de�nition

revealed that it must be treated di�erently from the other three [Sch96b].

Delayed dependencies are a special case of dynamic dependencies. They also

involve the possibility of two state changes in two devices, but introduce a delay

time between the switching operations. Obviously, parallel delayed dependencies

do not make sense, thus leaving the before and after cases.

Delayed dependencies are treated similarly to the other dynamic dependen-

cies, but another event is added. In Example 2c, valve 34 has to be closed one

second after valve 31 is closed. Listing the required Troll events for the closing

command on valve 31, we get:

1. Valve 31 closes.

2. As soon as the hardware of valve 31 is closed, its corresponding object is no-

ti�ed. If valve 34 is already closed, nothing else needs to be done. Otherwise,

the delay time begins.

3. As soon as the delay time has expired, valve 31 commands valve 34 to close.

Modelling Dependencies with Duties The observance of any type of de-

pendency is modelled in a system of duties. One dependency can result in a

number of duties imposed on several devices (e.g., see below how Example 1

is treated). Duties are speci�ed as record -types in VENTIL. They are stored as

attributes in the duty list12 of the MutableKnots they are imposed on. The duty

list is checked before any switching operation is applied to the device. A duty

object class would not be helpful, because all actions which process duties only

modify attributes of Knot, but never the values of a duty (except for creation

and deletion, of course).

Duty types are modelled as follows in Troll:

data type execution = enum(now, before, parallel, after)

data type duty = record(trigger : switch, exec : execution,

delay : time, target : |Knot|,

action : switch, once : bool)

data type delayedDuty = record(time : time,

duty : duty)

The enumeration execution is used to distinguish static (now) from dynamic

dutys. In the latter case, the time of execution of the second state change is given

as either before, after, or in parallel with the �rst state change, as explained

above.

The �rst component of the duty record holds the information on which

switch the duty must be ful�lled; e.g., a duty with the trigger value activate

imposed on a valve must be ful�lled each time the valve is opened. The exec

component determines the type of the duty. For before and after duties, delay

holds the time between the �rst and second switching operation; a delayed de-

pendency has a value greater then 0. To ful�ll the duty, action has to be passed

to the Switch operation of the target. The
ag once is set for dutys that have

to be removed from the duty list as soon as they are ful�lled. A delayedDuty is

an ordinary duty which has to be ful�lled at a certain system time.

12 The name \duty list" emerged during development although no sequencing is needed;

see the declarations for MutableKnot below.

Ful�lling Duties The declarations of MutableKnot, as far as the observance

of dependencies is concerned, look like this:

object class MutableKnot

aspect of Knot on ... -- Knot is the superclass of MutableKnot

attributes DutyList : set(duty);

DelayedDutyList : set(delayedDuty);

...

actions AreDutiesFulfilled(trigger:switch, ! now:bool, ! before:bool)

FulfillDuty(duty:duty)

FulfillAllDuties(trigger:action, exec:execution)

FulfillDelayedDuties()

Switch(action:switch, duties:set(duty))

...

end;

AreDutiesFulfilled returns (denoted by a `! ') for a given action whether all

now and before dutys in the DutyList are ful�lled. The return values are used by

the switching operation of specialised ImmutableKnots to determine whether the

desired action is allowed now or later or must be rejected. FulfillAllDuties

calls FulfillDuty to ful�ll all dutys in the DutyList for the given trigger and

exec parameters, e.g., to ful�ll all dutys before the MutableKnot is activated.

Similar to FulfillAllDuties, FulfillDelayedDuties is used to process the

delayedDutys in the DelayedDutyList as soon as their delay time has expired.

The action Switch is inherited from the superclass Knot (see Subsect. 5.1).

Here, we introduce the second parameter, the set duties. All members of duties

are added to the DutyList. Usually, duties is empty, but to ful�ll a before

duty, one new duty is passed; see below.

Lead by the examples introduced earlier, we will now take a look at how

these actions work together if a static, dynamic, or delayed dependency must be

ful�lled.

Ful�lling a static dependency is as simple as expected. Example 1 requires

two dutys:

(activate, now, 0, Valve 26, activate, false)

imposed on Valve 31 and

(deactivate, now, 0, Valve 31, deactivate, false)

imposed on Valve 26.

While opening, the �rst duty must be ful�lled for Valve 31. The Switch

action of Valve 31 checks the Status of the dutys target, Valve 2613. If Valve

26 is activated (i.e. the Status of Valve 26 is not closed), the hardware of

valve 31 can be activated, too. Otherwise, the switching command is rejected.

Similarly, Valve 26 must check the status of Valve 31 before closing (according

to the second duty given above).

The dynamic dependency of Example 2b results in the duty

13 This is meant to be the identity of the object representing valve 26.

(activate, before, 0, Valve 35, activate, false)

imposed on Valve 34.

What happens if the dynamic dependency of Example 2b must be ful�lled

is shown in the Object Communication Diagram in Fig. 5. In the �rst Troll

event (shown as continuous arrows), the Switch action is called to open Valve

34. Switch uses AreDutiesFulfilled to �nd out that there is at least one unful-

�lled before duty and calls FulfillAllDuties with the parameters activate

and before. FulfillAllDuties calls FulfillDuty to ful�ll all necessary dutys,

including the one of our example above. To ful�ll the duty, Switch is called for

Valve 35. The arguments passed are activate to open the valve (what is done

by a call to the hardware interface object) and a set(duty) containing

(activate, after, 0, Valve 34, activate, true).

This new duty is added to the DutyList of Valve 35.

As soon as the hardware of Valve 35 is opened, the second Troll event is

initiated (dashed arrows). Because the event takes place after Valve 35 has

been activated, the new duty must be ful�lled and then deleted from the

DutyList (the last component of the duty is true). Ful�lling the duty results in

the opening of Valve 34, thus we have Valve 34 opened after Valve 35 | as

required by the dependency.

AreDutiesFulfilled

Switch

FulfillAllDuties

HardwareChanged

FulfillDelayedDuties

FulfillDuty

HasChanged

Close

Open

HasChanged

Close

Open

AreDutiesFulfilled

Switch

FulfillAllDuties

HardwareChanged

FulfillDelayedDuties

FulfillDuty

Valve 35

ValveHWI 35

Valve 34

ValveHWI 34

Fig. 5. Object Communication Diagram for Example 2b (dynamic dependency).

Finally, we take a glance at Example 2c and the respective Object Commu-

nication Diagram (Fig. 6). The duty which is imposed on Valve 31 is

(deactivate, after, 1, Valve 34, deactivate, false).

If the duty must be ful�lled (event one, continuous arrows), the hardware of

Valve 31 can be Closed immediately, because we talk about an after duty. Af-

ter Valve 31 is closed, it tries to FulfillAllDuties (event two, dashed arrows).

It therefore delays our example duty by adding

(current time + 1 sec, (deactivate, after, 1, Valve 34, deactivate, false))

HasChanged

Open

HardwareChanged

FulfillAllDuties

Close

AreDutiesFulfilled

Valve 31

FulfillDelayedDuties

Switch

FulfillDuty

ValveHWI 31
AreDutiesFulfilled

Switch

FulfillAllDuties

HardwareChanged

FulfillDelayedDuties

FulfillDuty

HasChanged

Close

Open

ValveHWI 34

Valve 34

Fig. 6. Object Communication Diagram for Example 2c (delayed dependency).

to the DelayedDutyList of Valve 31. As soon as the speci�ed time is reached

the third event takes place (dotted arrows): FulfillDelayedDuties calls once

again FulfillDuty, and Valve 34 is Closed, too.

5.3 Calculation of the Gas
ow

Searching the Gas
ow Based on the requirements mentioned in Subsect. 4.2,

we derived the algorithm to calculate the gas
ow in an explosion test stand. In

short, an action Gasflow searches all Knots in the GasflowGraph and determines

whether they are endpoints or not. If a Knot is an endpoint, Gasflow �nds all

directed, acyclic paths (called gas
ows) to a di�erent endpoint, leading only

through Knots with a Status di�erent from closed (all ImmutableKnots, for

instance).

This search is done by calling the recursive action FindFlow in the endpoint.

In the case of a successful search, FindFlow returns the set of Knots which

are contained in any of the gas
ows beginning in this endpoint. The union of

all those sets for all endpoints obviously contains all Knots through which gas

ows. This union is called the gas
ow, because the following can be shown: The

vertices between any of the Knots in the gas
ow represent exactly those pipes

of the test stand which contain gas. This means, to show the gas
ow in the test

stand to the users, it is su�cient to mark the vertices between each two Knots

in the gas
ow.

Recursive Search for Endpoints We stated above that Gasflow must �nd

each endpoint of the graph, call FindFlow for them, and calculate the union of

the resulting gas
ow sets. To start with, it is necessary to explain the signature

of FindFlow:

FindFlow(visited:set(|Knot|), flow:set(|Knot|),

! newFlow:set(|Knot|), ! success:bool);

The set visited contains all Knots of the graph which are already part of the

current recursion. This parameter is used to avoid cycles in the search. The

other input parameter, flow, holds the set of Knots which have already been

discovered to be in the gas
ow currently searched. Corresponding to flow is the

output parameter newFlow. In this set, all the members of flow are returned

plus the identity of the current Knot, if it is in the gas
ow, too. In this case,

success is set to true.

For the speci�cation of Gasflow it is therefore necessary to call

inGasflow : set(|Knot|);

ignore : bool;

FindFlow(fg, fg, inGasflow, ignore);

to each endpoint of the graph and unite the resulting inGasflow sets. The

success parameter can be ignored here.

The calls to FindFlow and the collection of their results is easily speci�ed if we

can use command sequences. But with Troll, we encounter the challenge that

the whole calculation has to be done in one shot. There is no while statement.

There is no way to make an arbitrary number of action calls and keep the results

for \later" processing. The only possibility we have is to use the uni�cation of

action calls to imitate a sequence of calls. In such a \sequence", the newFlow

result of a call has to be inserted as the flow parameter of the next call.

We use the additional recursive action

GasflowNo(no:nat,knots:list(|Knot|),flow:set(|Knot|),! newFlow:set(|Knot|))

for this task. The �rst two parameters control the recursion: knots contains a

list of all Knots in the graph (in arbitrary, but �xed order), no the current index

in the list. The recursion is initiated with the parameter no set to the number of

Knots. The index is decremented in each recursion step until 1 is reached. The

parameters flow and newFlow are used like their counterparts in FindFlow.

Here is the complete speci�cation of GasflowNo and Gasflow. The �rst Knot

for which FindFlow may be called is knots[1]. For the calculation of newFlow,

note that the results flowNo and flowOut are unde�ned if the respective action

calls do not take place.

GasflowNo(no:nat,knots:list(|Knot|),flow:set(|Knot|),! newFlow:set(|Knot|))

variables flowNo, flowOut : set(|Knot|);

ignore : bool;

do onlyIf(no > 1): GasflowNo(no-1, knots, flow, flowNo);

onlyIf(knot[no].Type = endpoint): -- start recursing Knots here

knot[no].FindFlow(fg, no > 1 ? flowNo : flow, flowOut, ignore);

newFlow := (knot[no].Type = endpoint) ? flowOut

: (no > 1 : flowNo : flow);

od

Gasflow()

variables knots : list(|Knot|) derived knots := toList(dom(Knots));

flow : set(|Knot|);

do GasflowNo(length(knots), knots, fg, flow); -- initiate recursion

ShowGasflow(knots); -- visualise gas
ow to users

od

Recursive Search in the Graph and in the Knots We just discussed how

the actions Gasflow and GasflowNo are used, so we do not need to cover any

details of the FindFlow and FindFlowNo actions; they are used to recursively

search the arbitrary number of Vertices within a single Knot analogous to the

Knots of the graph. Additionally, FindFlowNo calls FindFlow in a neighbouring

Knot to traverse the graph recursively.

Thus we have three nested recursions to calculate the gas
ow | all of

them carried out concurrently, only \sequentialised" through Troll's uni�ca-

tion mechanism. Figure 7 visualises the three recursions on instance level. Note

that each Knot can be a part of several calling \sequences".

FindFlowNo

FindFlow

Knot

Knot

FindFlow

FindFlowNo

FindFlow

Knot

FindFlowNo

FindFlow

FindFlowNo

Knot

GasflowGraph

Gasflow

GasflowNo

Fig. 7. Object Communication Diagram for the three nested recursions of the

gas
ow calculation.

6 Experiences

We have developed a speci�cation of VENTIL that successfully exploits the fea-

tures Troll provides.

The object-orientation of Troll helped us to �nd a modular structure and

well-de�ned module interfaces. Inheritance became an important factor in the

speci�cation of the graph, since we were able to separate general properties of a

node (e.g., during the gas
ow calculation) from those of specialised device nodes.

The general design and speci�cation of a Knot is reused in every (future) device

object class, and no change to some device class will in
uence other Knots.

Constraints, often in conjunction with the powerful descriptive select state-

ment, proved to be very helpful, too. They allow for compact and yet simple

restrictions of the possible behaviour of objects.

Because of the similarities to the transaction concept of databases, the virtues

of parallelism are obvious if a \usual" information system is designed. But even

in VENTIL, concurrent execution has advantages, e.g., whenever one device is

the target of several duties. During the implementation, we were troubled by

serialisation, because two duties that are ful�lled simultaneously in one Troll

event can have two di�erent e�ects if they are ful�lled one after the other.

On the other hand, sequential execution would have been useful during the

gas
ow calculation. The implementation which we successfully derived from our

speci�cation has been simpli�ed. It requires only one level of recursion instead of

three in Troll and is therefore probably easier to understand. We nevertheless

speci�ed the complete algorithm to allow for the animation of the whole VEN-

TIL model14. Discovering that Troll has de�ciencies in the domain of VENTIL

was not surprising though. Recall from Sect. 1 and 2 that Troll is primarily

designed for the development of information systems. As a rather technical ap-

plication, VENTIL is situated at least on the edge of Troll's target domain, if

not even outside.

Finally, some more notes on the implementation are appropriate. From about

2500 lines of Troll, we received an output of more than 20000 lines of C++

code. We derived rules describing how to translate many parts of the speci�ca-

tion into C++ [Sch96b]. Although no tools where available, the transition from

the compact Troll notation to C++ was, except for the di�culties mentioned

above, surprisingly straightforward. In fact | from the overall class structure to

algorithmic details in the gas
ow calculations | there are on any design level

almost one-to-one relationships between the speci�cation and the implementa-

tion. On the code level though, the direct translation of the speci�cation required

to implement many additional classes to support Troll data types (like sets of

Knots, etc.). Overall, we strongly believe that the formal speci�cation of VENTIL

has payed o�.

7 Conclusions and Future Work

In this paper, we presented the speci�cation of VENTIL, a program to monitor

and control the devices in an explosion test environment. VENTIL is a part of

the ongoing development of a large information system in the PTB. We also pre-

sented our experiences with the use of the formal speci�cation language Troll

in our project. So far, they were positive. One advantage of using Troll was to

achieve �rst a rather global view before considering details. Changes to the �ner

grained speci�cation documents did not a�ect the global view. Furthermore, the

formality and clearly de�ned semantics of Troll speci�cations carried over to

the implementation. The work for one laboratory is �nished and we are currently

implementing systems for the other two laboratories [HDK+97].

In the next step of the development of Troll, we will establish tool sup-

port [Gra97]. Most important are tools that allow for a fast modi�cation of the

speci�cation documents while ensuring consistency throughout the project. The

rei�cation from speci�cation to implementation is another objective we want to

reach in the near future.

14 At least theoretically, since there is no animation tool available for the current version

of Troll.

Acknowledgements

We thank the employees of the PTB's group 3.51 for their support, especially

Achim K�uhne for his patience in discussing the technical details of VENTIL.

We also thank Peter Hartel and Grit Denker for answering speci�c questions

on Troll. Finally, we thank the anonymous reviewers for their useful hints on

preparing the �nal version of this paper.

References

[BH94] J. P. Bowen and M. G. Hinchey. Seven more myths of fomal methods: Dis-

pelling industrial prejudices. In M. Naftalin, T. Denvir, and M. Bertrani, ed-

itors, FME'94: Industrial Bene�t of Formal Methods, number 873 in LNCS,

pages 105{117. Springer-Verlag, Berlin, 1994.

[BH95] J. P. Bowen and M. G. Hinchey. Seven more myths of formal methods. IEEE

Software, 12(3):34{41, 1995.

[Den95] G. Denker. Transactions in object-oriented speci�cations. In E. Astesiano,

G. Reggio, and A. Tarlecki, editors, Recent Trends in Data Type Speci�cation,

10th Workshop on Speci�cation of Abstract Data Types, Joint with the 5th

COMPASS Workshop; S. Margherita, Italy, number 906 in LNCS, pages 203{

218. Springer-Verlag, Berlin, May 1995.

[Den96] G. Denker. Semantic re�nement of concurrent object systems based on seri-

alizability. In B. Freitag, C. B. Jones, C. Lengauer, and H.-J. Schek, editors,

Object Orientation with Parallelism and Persistence, pages 105{126. Kluwer

Academic Publ., 1996. ISBN 0-7923-9770-3.

[DH97] G. Denker and P. Hartel. Troll { an object-oriented formal method for

distributed information systems design: Syntax and pragmatics. Informatik-

Bericht 97-03, Technical University of Braunschweig, 1997.

[EH96] H.-D. Ehrich and P. Hartel. Temporal speci�cation of information systems.

In A. Pnueli and H. Lin, editors, Logic and Software Engineering. World Sci-

enti�c, 1996.

[Ehr96] H.-D. Ehrich. Object Speci�cation. Informatik-Bericht 96-07, Technical Uni-

versity of Braunschweig, 1996.

[EN 87a] CELENEC: Europ�aische Norm EN 50014. Elektrische Betriebsmittel f�ur

explosionsgesch�utzte Bereiche, Allgemeine Bestimmungen. VDE{Verlag,

Berlin, O�enbach, 1987.

[EN 87b] CELENEC: Europ�aische Norm EN 50018. Elektrische Betriebsmittel f�ur ex-

plosionsgesch�utzte Bereiche, Druckfeste Kapselung \d". VDE{Verlag, Berlin,

O�enbach, 1987.

[ES95] H.-D. Ehrich and A. Sernadas. Local speci�cation of distributed families

of sequential objects. In E. Astesiano, G. Reggio, and A. Tarlecki, editors,

Recent Trends in Data Type Speci�cation, 10th Workshop on Speci�cation of

Abstract Data Types, Joint with the 5th COMPASS Workshop; S. Margherita,

Italy, number 906 in LNCS, pages 219{235. Springer-Verlag, Berlin, May

1995.

[FBGL94] J.S Fitzgerald, T.M Brookes, M.A Green, and P.G Larsen. First results

in a comparative study. In M. Naftalin, T. Denvir, and M. Bertrani, edi-

tors, FME'94: Industrial Bene�t of Formal Methods, number 873 in LNCS.

Springer-Verlag, Berlin, 1994.

[Gra97] A. Grau. An Animation System for Validating Object-Oriented Conceptual

Models. In J.P. Tolvanen and A. Winter, editors, 4th Doctoral Consorcium

on Advanced Information Systems Engineering (CAiSE'97), Barcelona. Fach-

berichte Informatik 14/97, University Koblenz-Landau, June 1997.

[Har97] P. Hartel. Konzeptionelle Modellierung von Informationssystemen als ver-

teilte Objektsysteme. Reihe DISDBIS. in�x-Verlag, Sankt Augustin, 1997.

[HDK+97] P. Hartel, G. Denker, M. Kowsari, M. Krone, and H.-D. Ehrich. Informa-

tion systems modelling with TROLL formal methods at work. Information

Systems, 22(2-3):79{99, 1997.

[Hoh96] T. Hohnsbein. Objektorientierte Realisierung eines Me�datenerfassungssy-

stems f�ur druckfeste Kapselung. Diploma thesis, Technical University of

Braunschweig, 1996.

[HS94] T. Hohnsbein and H. Scha�ee. Reengineering des Programms DRUCKMESS

in der PTB. Project work, Technical University of Braunschweig, 1994.

[JWH+94] R. Jungclaus, R.J. Wieringa, P. Hartel, G. Saake, and T. Hartmann. Com-

bining Troll with the Object Modeling Technique. In B. Wol�nger, editor,

Innovationen bei Rechen- und Kommunikationssystemen. GI-Fachgespr�ach

FG 1: Integration von semi-formalen und formalen Methoden f�ur die Spezi�-

kation von Software, Informatik aktuell, pages 35{42. Springer-Verlag, Berlin,

1994.

[KHDE96] M. Kowsari, P. Hartel, G. Denker, and H.-D. Ehrich. A case study in in-

formation system design, the CATC system. FME'96: Industrial Bene�t and

Advances in Formal Methods, Oxford, UK, poster session, March 1996. Avail-

able on http://www.cs.tu-bs.de/idb/publications/pub 96.html.

[KKH+96] M. Krone, M. Kowsari, P. Hartel, G. Denker, and H.-D. Ehrich. Develop-

ing an information system using Troll { an application �eld study. In Con-

ference on Advanced Information Systems Engineering (CAiSE'96), Crete,

Greece, number 1080 in LNCS. Springer-Verlag, Berlin, 1996.

[Kow96] M. Kowsari. Formal object oriented speci�cation language Troll in infor-

mation system design. In H.-M. Haav and B. Thalheim, editors, Doctoral

Consortium of 2nd International Baltic Workshop on Databases and Infor-

mation Systems, Tallinn, Estonia, 1996.

[ORW83] H. Olenik, H. Rentzsch, and W. Wettstein. Explosion Protection Manual.

W. Girardet, Essen, 2nd revised edition, 1983.

[RBH87] H. Rechenberg, J. Bortfeld, and W. Hanser. 100 Jahre Physikalisch{Techni-

sche Bundesanstalt 1887{1987. VCH Verlagsgesellschaft, Munich, 1987.

[RBP+91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorenson. Ob-

ject{Oriented Modeling and Design. Prentice Hall, Englewood Cli�s, New

Jersey, 1991.

[Sch96a] H. Scha�ee. Objektorientierte Realisierung der Benutzerschnittstellen eines

Me�datenbearbeitungssystems f�ur druckfeste Kapselung. Diploma thesis,

Technical University of Braunschweig, 1996.

[Sch96b] M. Sch�onho�. Objektorientierte Realisierung eines Steuerungs- und �Uberwa-

chungssystems f�ur Explosionspr�ufst�ande. Diploma thesis, Technical Univer-

sity of Braunschweig, 1996. Available on http://www.i�.unizh.ch/~mschoen.

[WJH+93] R. Wieringa, R. Jungclaus, P. Hartel, T. Hartmann, and G. Saake.

omTroll { Object modeling in Troll. In U.W. Lipeck and G. Koschorreck,

editors, International Workshop on Information Systems { Correctness

and Reusability (IS-CORE'93), Technical Report No. 01/93, University of

Hanover, pages 267{283, 1993.

