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Abstract

The objective of this thesis is to evaluate the object oriented specification language
Troll for industry. We used Troll from analysis to implementation for an infor-
mation system which is located at the Physical Technical Federal Board (PTB) in
Germany. This information system assists different users who deal with the certi-
fication and testing of electrical equipment in an explosive atmosphere. The main
part of this thesis therefore describes the advantages and the disadvantages of us-
ing Troll in various software engineering phases and different problem domains,
such as in the safety critical part. When we started this project it was clear that
Troll was not suited for all aspects which we had to deal with. However, due to
the well-defined semantics of Troll it was straightforward to extend it as needed.
Limits, however, had to be accepted in certain areas such as those with real-time
aspects. In this thesis, we will also demonstrate how formal techniques that include
the object oriented paradigm can be made profitable in software engineering prac-
tice. Software engineers should not be asking how to use formal methods, but how
to benefit from them as part of a complete software engineering approach. We will
give some rules and advice based on practical experience which can provide benefits
in similar settings.



Zusammenfassung

In der vorliegenden Dissertation wird die objektorientiert Spezifikationssprache
TROLL im industriellen Bereich evaluiert. Hierzu wurde TROLL für die Entwick-
lung eines Informationssystem der PTB (Physikalisch Technischen Bundesanstalt
Braunschweig) von der Analysephase bis zur Implementierung eingesetzt. Das In-
formationssystem unterstützt unterschiedliche Benutzer bei der Zertifizierung und
dem Test von elektrischen Geräten, die in explosiven Umgebungen eingesetzt wer-
den. Der Hauptteil dieser Dissertation beschreibt die Vor- und Nachteile von TROLL
beim Einsatz in den verschiedenen Software Engineering Phasen und den unter-
schiedlichen Anwendungsgebieten, wie etwa im sicherheitskritischen Bereich. Beim
Start des Projektes stand bereits fest, dass die Sprache TROLL nicht alle Aspekte
der Entwicklung abdecken konnte. Es war jedoch aufgrund der strengen semantis-
chen Definition der Sprache einfach, TROLL um neue Konzepte zu erweitern. An
einigen Stellen, wie z.B. bei der Realzeit mußten aber die Grenzen der Erweiter-
barkeit aktzeptiert werden. Zusätzlich zeigt diese Dissertation, wie eine Kombina-
tion aus formalen Techniken und objektorientierten Ansätzen effektiv im Software
Engineering eingesetzt werden kann. Softwareentwickler sollten in Zukunft nicht
mehr fragen, ob sie eine formale Methode benutzen sollen, sondern eher wie sie diese
in der Softwarentwicklung optimal einsetzen können. Die Arbeit gibt Ratschläge und
Regeln weiter, die auf den positiven Erfahrungen bei der Entwicklung des Informa-
tionssystems der PTB basieren.
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Chapter 1

Introduction

Using formal methods helped us to build the right system and helped us
to build it right - at no extra cost.

- Anthony Hall, IEEE, 1996 [Hal96]

This chapter will discuss the motivation, the context, the objectives and the
structure of this thesis.

1.1 Motivation

Information systems are reactive systems capable of maintaining and utilising large
amounts of data. Most safety critical systems, such as banking systems and railway
systems, belong to this category. Information system development is an iterative
process which begins with the definition of a system requirement, continuing with
design refinement and ending with its implementation. Early error detection in sys-
tem requirement specifications reduces the effort and the time spent with corrections
in other software process phases[Wes02, BAM+02].

In 1996, more than US $180 billion were spent in the United States on software
development projects which had failed because their requirements were insufficient,
elusive or changed and the domains were not properly understood [FME97]. For
this reason, application of a formal method in an industrial environment is tak-
ing an increasingly central and important position in the development of complex
information systems [HB95, ABL96, BP01].

At present, it is difficult to specify what a software system will do. On the
one hand, most software systems include different subsystems: understanding the
interaction of these subsystems as well as understanding the system within its en-
vironment are only a few of many important aspects that are necessary to describe
system specification. On the other hand, requirement capture is not easy: the soft-
ware system has various different users each of whom is only familiar with his own
subjective evaluation of the system. Consequently, no one has a full understanding
of the entire system [JBR99]. Thus,developing and specifying complex software sys-
tems correctly is an important area of research in the computer science community.
Required is a formal language at a high level of abstraction which does not permit
ambiguities. There are two approaches associated with the above activities: the
formal method and the object oriented method.
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The formal method is based on a mathematical notation which precisely defines
requirements and eliminates residual errors in the specification. The object oriented
method concentrates on methodological aspects which when combined with a graph-
ical notation improves the communication between users and developers as well as
the system set-up of the abstract model.

A specification language can be regarded as a way of writing a contract between
customers and system designers. A certain degree of specification clearness and
readability is necessary for domain specialists. Formality is also necessary in order
to attain additional information for further design and implementation.

Moreover, modelling of complex information systems requires the use of an ap-
proach which covers both the static and the dynamic aspects of the system on a
high level of abstraction.

In the object oriented paradigm a system is viewed as a community of interact-
ing objects which allows for a detailed presentation of real world entities and can
reflect their behavioural and static properties. However, popular object oriented
methods such as UML [RJB99] lack the formality required to model complex infor-
mation systems. From a practical point of view, it is advantageous to combine both
approaches in order to develop complex information systems.

The formal method has established itself in the area of safety critical systems,
while the object oriented method is used for application in business. The fact that
a complex information system can include different problem domains makes such a
combination attractive [EH96]. The users of the formal method try to enhance their
approach with the object oriented method while the users of the object oriented
method try to utilise the formal method to analyse their semantics [Lan95, GK96].
Several formal specification languages already have object oriented extensions, e.g.
VDM++ [DK92], MooZ [MC90]. Although they have been adapted to the object
oriented method, they must still contend with a low level of abstraction.

Case studies are needed to demonstrate the benefits of such combinations. Such
studies are easier to plan than other techniques because they are purely empirical
and/or psychological. However, they are more difficult to interpret and cannot be
generalised [KPLP95]. A case study can show the effects of technology in a typi-
cal situation, but it cannot be generalised and applied to other possible situations.
Therefore, systematic evaluation is needed to understand the strengths and weak-
nesses of each method, their appropriate contexts and tasks to which each is most
suitably applied.

The central questions are: which parts should be evaluated and how? By an-
swering these questions, we can learn more about the use of existing methods and
how to engineer new methods.

1.2 Context

The work found in this thesis was developed in the context of the formal object
oriented specification language Troll 3.0 (Textual Representations of an Object
Logical Language) [DH97, Har97, GKK+98]. Troll is a language designed for
the analysis and design of distributed information systems. The roots of Troll
can be found in articles mainly devoted to semantic foundations of object oriented
specifications [SSE87, SFSE88, EGS90, ES90, SJE92, EDS93, EJDS94, SHJE94].



1.3. Objectives 3

These articles were the starting point for the design of a series of specification
languages based on the object paradigm. The language OBLOG was presented in
[SSE87, CSS89, Esp93]. The language Troll [JSHS91, JSHS96, HSJ+94, HKSH94]
was developed in the following years based on OBLOG.

The design of the third and current version of Troll has been significantly
influenced by the experience gained in an industrial project located at the PTB
(Physikalisch Technischen Bundesanstalt: Physical Technical Federal Board) in
Braunschweig [Kow96, HDK+97, SK97, KG98]. The work reported in this thesis
was started in 1994 and has been mainly supported by the PTB. Theoretical foun-
dations, distributed logic [ECSD98, EC00], module theory [Küs00a, Küs00b] and
model checking [EP00, PE01] are addressed. Work towards extending Troll by a
module concept is carried out by [Eck98, Eck01].

The study and development of tools supporting the modelling and animation
of Troll specifications is done by [Gra01]. Besides further application projects in
co-operation with the PTB, Troll are being applied in a project which aims at
combining the Troll and Petri net approaches to software specification in a railway
traffic control application [EG01].

1.3 Objectives

The objective of this thesis is to apply a formal object oriented language called
Troll in a case study. As already mentioned above, the project is a cooperation
with the Physical Technical Federal Board (PTB) located in Braunschweig. This
project began in 1994 and was completed in 2000. We used Troll for analysing,
specifying, and implementing an information system to help different users to deal
with the certification and testing of electrical equipment in an explosive atmosphere
Figure 1.1). The experience that we gained from this project improved our under-
standing of how to specify Troll. In this thesis, we present a method for specifying
with Troll and illustrate the use of the language concepts by means of examples.
We used Troll in different software engineering phases and problem domains, for
example the safety critical part. With the help of an example from the safety critical
part we will show step by step how Troll and its graphical part OMTroll are
used in system analysis, design and implentation in our case study.

Figure 1.1: Flame Proof Enclosure
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1.4 Structure of the Thesis

The thesis is structured as follows: Chapter 2 will compare different approaches
in the area of methodology. Emphasis will be placed on the use of formal object
oriented methods in the real world. Most formal methods only consist of a specifica-
tion language which is based on mathematical notations and sometimes a test and
validation system. In the last 25 years, a lot of research has been carried out in this
area. However, the methodological aspect for the development process has been re-
peatedly neglected. It is therefore very important to introduce methods which deal
with this aspect.

After a short introduction showing the different software lifecycle models, this
chapter will describe two different categories of method. The first is based on one
specification language with its own environmental systems and development pro-
cesses and will be introduced by summarising the concepts of Albert II, OBLOG,
OASIS and UML. The second category is created as a compilation of different spec-
ification languages and their environmental structures. This will be illustrated by
the Heisel Approach and BOOAD.

Chapter 3 illustrates our case study, introduces the problem domain and the
information system to be developed. The system description is presented graphi-
cally using OMTroll˙

Chapter 4 presents modelling with Troll and its graphical part OMTroll.
The language concepts are introduced by using examples from CATC. In order to
illustrate the use of Troll in the design of the information system and development
of our methodology, we will focus on one part of the CATC system, namely the re-
mote controlling of valves (VENTIL). We will describe the modelling of VENTIL
step by step using our methodological guidelines. This chapter concludes with a
brief description of the tools contained in the Troll workbench and describes how
and when it was used in CATC.

Chapter 5 will highlight our results and important aspects of using Troll in
our case study. We will first present our development process and procedure as well
as the team structure. After briefly introducing the phases of the software lifecycle
in our project, the chapter will describe the benefits of using Troll in the imple-
mentation phases. We will focus on a translation from Troll to C++ and show
how the Troll specifications can be mapped into C++ - as well we will show a set
of mapping rules. Finally, the chapter will concentrate on experiences concerning
the integration of various system parts of CATC.

Chapter 6 will sum up the main contributions of this thesis and suggest some
directions for further work.

Appendix A shows the syntax of OMTroll and Troll. Appendix B con-
tains the Troll specification of the example used throughout this thesis. Ap-
pendix C shows the structure of Object winodws Library . Finally, Appendix D
contains the C++ classes of the example used for metrics in Chapter 5.
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Chapter 2

The State of the Art and Related
Work

2.1 Introduction

The question software engineers should now be asking about formal meth-
ods is not whether to use them, but how best to benefit from them as part
of a complete software engineering approach Anthony Hall, [Hal96]

In this chapter, we will compare different approaches for methodological aspects
in the development process. Emphasis will be placed on the use of formal object ori-
ented methods in real world applications. In the development of complex real world
applications various process steps are needed. Apart from notations and graphical
interfaces, procedures and rules on how to apply these languages adequately become
essential.

Experts do not want to deal with the entire notation because they feel it is too
complex. It can therefore be very helpful to offer experts a requirement analysis
manual which includes further refinements - from the planning phase to the imple-
mentation phase. Most formal methods are only a specification language possessing
one mathematical notation and in some cases a test and validation system.

In the last 25 years, a lot of research has been carried out in this area. The
methodological approach, however, has repeatedly been neglected in the develop-
ment process. It is therefore very important to introduce methods that can solve this
problem. There are basically two different categories of method. The first is based
on one specification language with its own environmental systems and proceedings
and will be introduced in section 2.3 by summarising the concepts of Albert II,
OBLOG, OASIS and UML. The second category is a compilation of different speci-
fication languages and their environmental structures. This will be described by the
Heisel Approach and BOOAD in section 2.4.

According to the above categories, a distinction is made between the formal
approach which allows an object oriented extension like VDM and approaches that
are formally object oriented such as AlbertII. Before we begin to describe different
methods in sections 2.3 and 2.4, the question of lifecycle models must be discussed.
Lifecycle models are an important part of software development and various lifecycle
models exist, e.g. the waterfall model, the spiral model, the prototype model and
the evolutionary model.
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In section 2.2 the definition of methods will be examined. It is very important
to find an unanimous definition on which we can look back upon in chapter 4.

2.2 Software Lifecycle Models

It is important to set-up a software development plan whenever a software devel-
opment project is started. Such a plan is made up of different parts: resource
and schedule estimates, organisation and staffing, validation and verification etc.
[BH96]. One of the important elements in such a plan is a lifecycle model for organ-
ising and managing the software development process. A software lifecycle model
is an abstract representation of how software is developed and includes concurrent
or sequential phases in the software development process [BH96, MS92]. Lifecycle
models are therefore crucial parts of development methods, however, they have not
yet evolved sufficiently to support new paradigms such as object orientation [Hes97].
Nevertheless, there have been many activities in this area in the last few years and
we will try to give an overview of these in this section.

Generally, a software development model refers to the whole system in regard
to requirement analysis, system design, software implementation and testing. In
the last 30 years, a number of lifecycle models have been developed which describe
the ideal development process. These models should be regarded as a guideline
for project development, e.g. the traditional waterfall model, the fountain model,
the spiral model and the prototype model. In practice, the waterfall model has
become the standard model. This model shows the different phases in which software
projects are developed: each phase starts with a number of queries which have arisen
in the previous phases. The aim is to achieve a fixed number of results. During these
phases, large systems are divided hierarchically into smaller components. These
components are then developed, tested and integrated separately into the system.
The integrated system is then installed into the project surroundings and after
acceptance released for use. This waterfall model, however, has not been accepted
because the development of complex systems does not flow linearly. For this reason,
gradually integrated models have been developed, such as the incremental model, the
spiral model (one of the most popular models) and finally the evolutionary model.

The spiral model (Figure 2.1) was developed by the experiences made with re-
finements on the waterfall model [TD96]. The spiral model consists of cycles which
involve a progression through the same sequence of steps: from an overall concept
of operation down to the coding of each individual programme for each portion of
the product and for each of its levels of elaboration.

The development of object oriented concepts made people think more intensively
about how a software lifecycle should be created. Development processes are too
complex to be shown linearly. Some parts of the analysis may be carried out before
the design begins while other analysis parts may proceed parallel with design and
implementation of other parts of the system.

In 1988, Brian Foote introduced the concept of the Fractal Model [MS92]. The
fractal model tries to characterise the phases of these iterative activities and describe
how mature reusable components result from them. The fractal model refines itera-
tive notions developed in the waterfall model, the evolutionary development model
and in particular the spiral model (Figure 2.2).
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Figure 2.1: Spiral Model
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Figure 2.2: Fractal Model
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McGregor and Sykes [MS92] combined these concepts with the philosophy of
object oriented software development. The three different corners of the triangle
stand for

• modelling the problem domain

• realizing classes

• refining and reusing the resulting product.

Each corner of this triangle may repeatedly be refined further.
All of the depicted models are linear one-dimensional models. However, different

approaches can be used, namely the formal method and the object oriented method
to realise information systems with the help of two-dimensional models [XJG98]. In
the two-dimensional models, the object oriented method is used as the horizontal
thread and the formal method is used as the vertical thread. The horizontal thread
describes the software process through analysis, design, prototyping, validation, im-
plementation and testing. The vertical thread shows the software process progress
in formal description, formal specification, data refinement, operation refinement,
verification and further refinement (Figure 2.3).

The lifecycle model which was discussed last is referred to as an Evolutionary
Object Oriented Software (EOS) development [Hes97]. It ties development cycles
and activities into software development components and deals with management
and project planning from a practical point of view (Figure 2.4).
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The fractal model appeared to be the best development process for our project
because it has the same structure that our project wants to realise. This is why
we made our method conform to this model as described in chapter 4. It should
be emphasised that a software process description hardly stands a chance of success
without determining a lifecycle model beforehand.

2.3 Definition of Method

It is an important activity in the software engineering community to build high qual-
ity software systems which are not over budget in a short period of time. Problems
increase exponentially with the size of the system. The main problem in the soft-
ware development process is understanding the problem domain at an early stage,
namely the analysis phase.

One of the many difficulties lies in understanding the customer’s needs and
wants. Applying a formal specification language to system requirements early in
the development process can result in more leverage. Errors discovered late in the
development process are much more expensive to rectify than those discovered in
the early development process. The important characteristics of a software require-
ments specification to solve this problem are described in [BH96]. A requirement
specification must

• separate whats from hows

• be precise

• be unambiguous

• be understandable
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• be consistent

• be modifiable.

Nevertheless, a specification language alone is not enough to develop a complex
information system. We need guidelines and rules based on a strong notation that
show us how we are going to develop our system step by step in different devel-
opment phases. In the last few years, much effort and energy has been invested
to develop such a methodology. A software development methodology can include
an integrated set of software engineering methods, policies, procedures, rules, stan-
dards, techniques, languages and other methodologies for all development phases
[Bjo98].

Companies must invest to train their staff to learn different methods. More
complex methods need more investigation and more investigation means higher costs
and more time. Especially small and medium sized companies are interested in short-
term solutions due to their limited budgets. What can be done in this situation?
How can a method be made less complex? These are two questions which we will
try to answer. In this context, it is important to mention that ”less complex” does
not necessarily mean ”fewer concepts”.

To begin with, it is important to give a clear definition of method. A commonly
used understanding of method describes it as consisting of a notation (textual and
graphical) and a set of guidelines and examples showing how the notation can be
deployed [Ste94, Rum94]. This description does not provide any hints as to how to
manage complexity. Rumbaugh provides a more comprehensive definition of method
which consists of:

• A set of fundamental modelling concepts

• A set of views and notations for presenting the underlying modelling infor-
mation to humans

• A step by step iterative process for constructing models and implementation
of them. The process may be described at various levels of detail, from the
overall project management down to the specific steps to build low level models

• A collection of hints and rules of thumb for performing development. These
are not organised into steps and may be applied wherever they make sense.

This definition supports multiple views of different aspects of a system, allowing
for hints which may only apply within certain domains.

Requirements must be made of how method definitions by Rumbaugh may be
applied and explained in more detail. A methodology is more likely to be used
when it is simple, clear, effective and small. The most confusing aspect of most
methodologies is understanding the large number of notations that must be applied.
The questions asked are normally as follows:

• Which concepts are available in our notations?

• How are the different concepts related?
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• When can a notation be used?

– In which phases of the lifecycle?

– Which parts of the system can be described with it?

Due to these problems, it is important to define method characteristics to make
them suitable for the real world as follows [TD96, FL98]:

• Guide the development of a system all the way from customer requirements
to testing

• Include both notations and process descriptions

• Specify phase products such as documents and figures

• Allow extensions and be easy to learn and use.

2.4 Methodologies Based on a Unique Approach

In this section, we will give an overview about methodologies which are based on an
unique approach. We will distinguish between the formal object oriented approach,
the formal approach and the object oriented approach.

2.4.1 Albert II

The formal object oriented specification language AlbertII [DB95] was developed at
the University of Namur (Belgium) for specification of functional requirements for
a concurrent real time system. An AlbertII specification is structured in terms of
agents which can be described or defined as basic units. Specifications are made up
of three sections:

• The definition of abstract data types and operations on them

• The definition of societies, i.e. how agents and societies are grouped together
to form a hierarchy

• The definition of the agents.

AlbertII concepts are named agents, but do not differ in their significance from
TROLL objects and their attributes, respectively. Components are called state
components while the definition of actions is similar. AlbertII makes a distinction
between actions of a certain duration and instant actions without duration (instan-
taneous actions). AlbertII defines certain constraints to confine possible behaviour.
It is based on an object oriented variant of temporal logic (Albert-CORE). Con-
straints are used for pruning the infinite set of possible lives of an agent which result
from the graphical declaration of its structure. The life of an agent consists of a
sequence of alterations and conditions; the condition being the period between two
successive alterations. Each alteration has an attached automatic time stamp.

Alterations may be called up by three types of events:
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• the start of an action

• the end of an action

• the happening of an instant action.

Constraints are part of an agent declaration and will be formulated with the help
of predefined templates. These templates are syntactic simplifications for certain
types of expressions of temporal logic. While an attribute or an action in TROLL
3.0 may basically be declared invisible for other classes by detailing hidden infor-
mation, co-operation constraints of AlbertII may express more flexible combinations
as the relevant visibility may be made dependent on a temporal condition, i.e. it
will be redecided in every condition. The semantics of AlbertII are given by map-
ping AlbertII specifications into fragments of the Albert-CORE logic which has been
strongly inspired by Real Time Object Specification Logic. A tool set is designed
for assisting the analyst in his task of analysing a requirements specification written
with the AlbertII [Hey97, HD98]:

• AORE (Agent Oriented Requirements Specification Environment)

• KBRA (Knowledge Based Requirements Assistant).

In practice, experiments have shown that it was not possible to support calculations
(possibly automated) for deducing properties from a system description for AlbertII
specifications. In order to solve this problem, automated and intuitive support is
provided – a conceptual reasoning assistant for exploring specifications and gain-
ing an initial understanding of them before it is possible to reason formally about
them. If the effort should pay off in the experimental process, errors may already
be disclosed. A distinctive characteristic is to use automated techniques in a local
manner whenever it is appropriate. This corresponds to the early stage support for
analysing AlbertII specifications.

AlbertII defines several strategies which are followed by the analyst. These
strategies should not, however, be interpreted as formal rules. They are applied in
practice in a flexible way and are often combined together.

• A ”Goal Oriented” Strategy

• A ”Retracting Assumptions” Strategy

• An ”Agent Oriented Framework” Strategy.

The first two strategies are based on progressive refinement of the specification
while the last strategy emphasises the possibility of reusing generic specification
components.

AlbertII is applied in many Case Studies, namely in computer integrated man-
ufacturing, in telecommunications, in control systems for a tower crane, video on
demand and in satellite communication systems [DDBZ95].
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2.4.2 OASIS

In comparison with other approaches, OASIS (Open and Active Specification of In-
formation System) Semantics for OASIS specifications are given by a set of logical
formulas expressed in an extension of dynamic logic which are interpreted by Kripke
structures. In the last few years, emphasis has been placed on the animation of OA-
SIS specifications in concurrent environments [LSR99]. An animation environment
based on concurrent logic programming is presented in [LSR97, Let99]. In this envi-
ronment, specifications are first modelled in a graphical editor and then stored in a
repository. Specifications are then translated into KL1 concurrent logical programs
which are compiled to obtain a prototype that can be carried out. A graphical user
interface allows users to simulate events that can also be read from a file and observe
the actions occurring in the objects and the reached states. In the OASIS animator,
objects communicate with one another asynchronously while in the Troll anima-
tor, they communicate synchronously, i. e. communication entails a synchronisation
between the lifecycles of the participating objects. Unlike the Troll animator
[Gra01], the OASIS animator does not support inheritance, aggregation or integrity
constraints, although it is supposed to support them as well as synchronous commu-
nication in up-coming versions. OASIS developed a CASE environment supporting
object oriented methods based on OASIS [PIP+97, PPIG98, PCR99]. The object
oriented method CASE allows developers to specify graphically the system, using
OASIS as an intermediate language to automatically generates a code in several pro-
gramming languages. Unlike the Troll animator, the code generation in the object
oriented method CASE is not oriented towards validation purposes, but rather to
obtain the final application.

2.4.3 UML

The Unified Modelling Language (UML) is an object oriented graphical language
for analysis and design. It essentially unifies the Booch, Rumbaugh (OMT) and
Jacobson (OOSE) methods, emerging from a cooperation between their designers,
and has become a standard modelling language [FK97, RJB99]. It is unified across:

• historical methods and notation

• the development lifecycle

• application domains

• implementation languages and platforms

• development process

• internal concepts.

The relationships between various UML diagrams are given in (Figure 2.5)
[HW98]

The Unified Modelling Language (UML) was adopted as a standard by the Ob-
ject Management Group (OMG) in November 1997 and has undergone gradual de-
velopment since then. UML covers all phases of software development; beginning
with the analysis through to implementation.
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Figure 2.5: UML Overview

UML consist of numerous different groups of diagrams which may explain various
aspects of the system to be developed from different perspectives at different times
within the development process:

Use Case Diagrams will be placed at the beginning of a requirement analysis
and present a rough and informal view of the limits of the system.

Static Structure Diagrams (Class Diagrams) are found in all phases of the
analyses and of the development in different detailed stages. The class diagram ex-
plains the static structure of the system with the help of object classes, its signatures
as well as the different relationships between these classes.

Object Diagrams show snapshots of a system at a certain point in time, i.e.
the concrete instances of the classes from the class diagram that exist at the given
point of time.

Sequence Diagrams are one of the two interaction diagrams offered in UML
to describe the interactions between objects. Sequence diagrams accentuate the
temporal sequence of messages.

Collaboration Diagrams contain essentially the same information as sequence
diagrams but shown in a different way. They emphasise the structure and the
relationships between the objects involved in the interaction.

State Diagrams (state chart diagrams) explain the accepted transition of object
conditions and their behaviour in form of condition automations which consist of
conditions, transitions, events and activities.

Activity Diagrams are based on condition automations, however, they only
possess activity condition and triggerless transitions. They are used to explain
workflows and operations.

Package diagrams are a further structural diagram which permits the logical
division of the classes to be shown in modules.

Component Diagrams are understood as the implementation of a limited
system part with fixed interfaces; usually containing multiple co-operating object
classes. Component diagrams may show the co-operation and the dependencies of



2.4. Methodologies Based on a Unique Approach 15

Software Development 
Process 

User's 
requirement 

Software 
system 

Figure 2.6: Activity

Figure 2.7: Development Process

several components.

Deployment Diagrams are the second type of implementation diagrams. With
their help, the configuration of a realised system may be shown in order to divide
the components into different nodes.

The Unified Development Process [JBR99] uses UML as a language to describe
different activities in development processes. It defines a software process as a
set of activities needed to transform user requirements into a software system (see
Figure 2.6). The unified process is component based: the software system being
built is made up of software components connected via interfaces. Moreover, it is
characterised as

• use-case-driven: the users’ requirements are captured in use cases

• architecture-centric: the system architecture is developed to meet the require-
ments of key use cases

• iterative: in that the project is broken down into mini projects (one for each
iteration). In each iteration some part of the system is analysed, designed,
implemented and tested

• incremental: each of the previous parts are an increment and the system is
built incrementally.

Figure 2.7 shows how the workflows requirements, analysis, design, implemen-
tation and test take place over the four phases, namely, inception, elaboration,
construction and transition. The curves approximate the extent to which the work-
flows are carried out in each phase. Recall that each phase usually is subdivided
into several iterations which constitute mini-projects [JBR99].
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2.4.4 OBLOG

Object Logic (OBLOG) is a further formal specification language [SSE87]. OBLOG
is the result of research work started in connection with the EC ESPRIT project IS-
CORE and has been developed into a commercial product by the OBLOG software
company in Lisbon. Based on the above mentioned publication [SSE87] OBL-89
was developed and explained in [CSS89]. The definition of an abstract object type
was introduced based on abstract data types in this publication and for the time
that the OBLOG was used as a language to specify a society of integrated objects.
OBL-89 distinguishes itself from other languages by structure object systems and
different language constructions to specify certain object characteristics. To specify
the object dynamics, a process description language leaning on CSP was introduced
with the option of including safety conditions to specify live conditions for an object.

OBL-89 specifies object instances which are in accordance with genetic object
descriptions (templates) through regulations of an identification mechanism (surro-
gate). To structure objects, concepts like specialisation, generalisation and aggre-
gation are introduced. Parallel to the definition of OBL-89, a first tool support has
been worked on and the prototype of a specification animator has been developed.
An in-part circumstantial syntax and several not very intuitive language construc-
tions have lead to no practical realisation of OBL-89. The two direct follow-ups of
OBL-89 were OBLOGwb and TROLL1.

Tools used for OBLOG are Editor, Animator and Designer. They support the
tasks of analysis and design, automate mechanical tasks such as codes and docu-
mentation production and aid in validation and verification.

2.5 Methodologies Based on Different Approaches

2.5.1 Heisel Approach

The Heisel Approach [Hei97] gives methodological support for the application of
the formal method. The emphasis lies in making the formal technique applicable
for non-experts. This approach defines agents and strategies as steps that support
some software development task which need collaboration between experts on formal
techniques and those parties who will be applying formal techniques.

An Agent is a list of activities which may depend on each other when carrying
out some tasks in the context of software engineering. The description of activities
are informal (see Figure 2.8).

Strategies serve to formalise a wide variety of software engineering activities and
is a generically known representation for software development activities. Strategies
are understood as concepts which are formally defined

Figure 2.8 shows different steps defined in this approach:

• Define all relevant notions of the application domain

• Define the requirements for the system to be built

• Convert the requirements in a pragmatic way into a formal specification

• Set-up mapping between the requirements and the formal specification
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Figure 2.8: Agenda for Specification Acquisition

• Validate the specification.

The Heisel approach can be used for every formal language.

2.5.2 Method for the First Project

This method is developed by Nokia Telecommunication, Finnland by A.Jaaksi [Jaa98].
The notation of the simplified method includes three main elements:

• Natural language

• Class diagrams

• Sequence diagrams.

Figure 2.9 illustrates the five phases of this method. Although the phases are
listed sequentially, a repetitive phase can be adopted as well. There are two parallel
paths in the process of system development: the static path uses class diagrams and
the functional path uses operation descriptions.

2.5.3 BOOAD

Business Object-Oriented Analysis and Design (BOOAD) [Bay99] describes an ob-
ject oriented analysis and design methodology that is tailored to software systems
whose functionality is mainly implemented by database operations. The notation
and semantics are inherited from OMT. Additionally, BOOAD contains notation
derived from database languages as well as programming languages. For example,
queries, transaction, integrity, exception mechanism. The process of BOOAD can
be described as follows:

• identify the outward behaviour of the system by discovering actors and how
each actor interacts with the system

• specify the user interface
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• specify the static structure of the system

• specify the dynamic behaviour of the system

• map user interface events to system events

• verify the model.
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Chapter 3

Case Study: The CATC System

3.1 Problem Domain

Our project was carried out at the Physikalisch-Technische Bundesanstalt1(PTB) in
Braunschweig/Germany. [JB87]. The PTB builds the foundation for scientific, tech-
nical and legal meteorology and of physical safety engineering and exercises control
functions in these fields. Its tasks are laid down in laws and regulations. Approxi-
mately 2000 employees work in 10 divisions in the fields of research, measurement
and consulting.

Group 3.4 ”Explosion Protected Electrical Equipment” works with the testing
and certification of explosion proof electrical equipment. Its research is based on
the European Standard EN 50014-50028 [EN 87a, EN 87b]. Equipment which has
been approved and certified by the European Standard is permitted to be set up
in hazardous areas. The tests guarantee the safety standard required by specifying
construction features and operating conditions for devices which may constitute a
hazard.

The assessment procedure is carried out by 80 employees responsible for testing
and certifying different electrical equipment in 3 laboratories. All necessary steps
are carried out manually by the staff in charge and are individually worked out. In
1994, Group 3.4 started a co-operation with the database group of the Technical
University of Braunschweig in order to computerise the certification procedure and
thus improve the communication among the PTB employees as well as between
PTB, manufacturers and 15 other similar laboratories in Europe.

It is very important that certification procedure information can be reused and
made available at any time. CATC (Computer Aided Testing and Certifying) is the
software system which was employed.

Due to the importance of safety factors in the certification procedure, the reli-
ability and robustness of the system takes a central position in the development of
CATC. The certification procedure steps are not necessarily sequential. Sequences
of the individual actions can partially be carried out on a parallel basis by an officer.

To automate these steps, an information system was developed in which the en-
tire system was partitioned and separately processed into the following part systems:

• the administration system ADMIN

1Federal Institute for Science and Technology
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• the standard system ExPert

• the standard system for plastics ExPlast

• the system PRESSTEST

• the system VENTIL

• the system JONIT.

The very complex certification procedure consists of preliminary screening of all
formal and informal documents and verification of the design papers. These are, for
example, technical drawings and experimental tests such as explosion tests, flame
propagation tests and thermal-electrical investigation tests which are all carried out
according to the European Standard.

3.2 System Description

The process that electrical equipment must go through during the certification pro-
cedure can be described in the following steps:

• registration of application of the manufacturer

• assessment of the design papers for the equipment based on descriptions and
its accordance with the European Standard

• preparation of the check lists, including all the necessary experiments that
must be carried out

• setting up the experimental tests and documenting the results

• preparation of the settlement of the account

• issuing a certificate or refusing an application depending on the test results.

There are two types of users involved in the above procedure: staff and operators.
The first three steps and the two last steps are carried out by the staff, while the
operator is responsible for experimental testing. During the certification procedure,
the communication between staff and operators is extremely important. Both have
access to the test results. Operators produce and store the test results while the
staff interprets them.

Test results which belong to a certain experiment can be pre-selected and ac-
cessed by the staff. The operators start the experiment. There are different tests
depending on the kind of electrical equipment used, i.e. the pressure test for a mo-
tor can be described as follows: a prototype (2) is placed inside a test chamber (1)
which is called an auto clave of an explosion test stand and is filled with an explosive
atmosphere (eA). A spark (S) then ignites the atmosphere inside the enclosure (see
Figure 3.1).

A prototype passes the test if the enclosure withstands the developing pressure
and temperature (◦C) and the explosion does not continue into the autoclave. 30
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Figure 3.1: Pressure Test.

kbytes data are produced every 0.2 seconds during the explosion, thus resulting in
a conflict between hardware which works in real time and the operating system.

In order to avoid any errors, the European Standard requires that every ap-
plication is tested by more than one experiment. While the experiments for one
application are being carried out, the staff may set up the next experiment.

CATC has a safety-critical application which is composed of a technical aspect
and a database aspect in a heterogeneous complex environment. At the same time,
it takes already existing and re-developed applications into consideration.

The above mentioned steps can be categorised as follows:

1. support experimental test,

2. manage basic administration data and

3. allow for design approval.

CATC has access to the central database of the PTB via LAN where common
data is stored. Further programmes for administration (RBEZ2, HASY3) access
this database (see Figures 3.2, Ex-Link). CATC is not a stand-alone information
system: it must be embedded into an existing environment. Furthermore, existing
application programmes which have to be re-specified because they were erroneous
must be dealt with: these re-specified sections must be embedded into the new
information system structure. There is also a link to the multiply accessed PTB-wide
database. Figure 3.2 illustrates the hierarchical structure of the intended information
system.

3.2.1 Basic Administration

The administration management which includes such information is essential for the
following tests in the certification procedure and must permanently be available.

2archive and documentation application
3settlement and calculation application
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Figure 3.2: CATC Overview

3.2.2 Design Approval

The subsystem dealing with design approval provides the relevant clauses of the
European Standard so that the certification procedure can become more efficient.
Thereby, required data can be retrieved more quickly and easily at every desk.

3.2.3 Experimental Tests

The subsystem for the experimental tests stores all relevant data which are performed
by the operators in the test laboratory. The aim is to ensure that flammable parts
which potentially can ignite an explosive atmosphere are placed in an enclosure. This
enclosure can withstand the pressure which develops during an internal explosion
of an explosive mixture and can also prevent the spreading of the explosion to the
explosive atmosphere surrounding the enclosure.

3.2.4 CATC Modelling

Specification of the CATC system is made up of four nodes: the user node, the
hardware node, the information system node and the timer node. (see Figures 3.3)

The information system node (in the following abbreviated as IG34) and the
system user are modelled into two separate nodes. This is essential so that more
than one user can work simultaneously with the IG34 System as a user model, i.e.
as a component within the IG34 System which would result in only one user being
able to work at a time.

The IG34 node presents the passive part as well as the data interface of the
system. The desired user behaviour could be specified in the active part of the node
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operatoradministrator staff

userLab

pstaffstandardstaff

Figure 3.4: USER Overview

behaviour and build the user interface.
The user node describes the possible behaviour of the different user groups such

as testers, technicians etc. and their interfaces to the main system. Digital outputs
such as ”open valve”, digital and analogue sensors, voltage representing measured
pressure etc. are modelled in the hardware node.

The IG34 and user nodes communicate with one another by means of an inter-
action, i.e. a user who wants to enter or delete data in the database by means of
the user interface will call up events in IG34 by interaction.

When the hardware close parts of the systems were modelled, it was clear that
the real existing hardware had to be made simultaneous to the two other nodes.
For this reason, a further node test stand hardware was created. The course within
the node test stand hardware and between IG34 and test stand hardware partly
underlay real-time requirements and the specification language.

Since TROLL does not dispose of a language construction, a further node system
timer was created. With its help, the real-time requirement was modelled.

The IG34 system and how the separation work was specified showing all part
systems is illustrated (see Figure 3.2). Each part depicted in can be described
by different objects (see Figure 3.3). For example ”Basic Administration Data”
requires object application, object type, object company etc. We showed the object
in Figure 3.3 with the same colours as in the Figure 3.2.

The object class Group is called a node of the system which is concurrent to
the other node shown in Figure 3.3, namely system timer as well as user node.
Furthermore, the IG34 system users were divided into different user groups whose
relationship to one another is shown in (see Figure 3.4).

Object class User is specialised in Staff, Operator and Administrator. Object
class Staff is specialised in pStaff who deal with certifying of electrical equipment
with plastic parts like switches and standardstaff who deal with other electrical
equipment like motors.

The system users can only call their components via the node IG34 as the user
interface and the database interface were modelled in different nodes. When object
class IG34 disposes events to manipulate the instances of its components, they will
be called by events of the users.
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we will now take a look at the specification of a whole object system (see Fig-
ure 3.5). The keyword object system followed by the name of the system is the
opening bracket. The specification itself consists of four parts: data type and object
class specifications, object declarations and a behaviour part where the global inter-
actions are described. We gave the name CATC to the system. We do not consider
any user defined data types.

object system CATC
data type ...
object class Application ... end;
object class ...
objects IG34:Group;
objects Users(userId:nat):User;
behavior
Staff(Users(userId)).createExperiment(appNr, nam, st, expNr)

do
IG34.Applications(appNr).newExperiment(nam, st, expNr)

od;
end.

Figure 3.5: Object System CATC

Two kinds of objects are described: IG34 is the name of an instance of object class
Group. After the occurrence of the accompanying birth actions, this object will also
contain objects of class Application as well as of class Experiment as components.
The declaration of several objects of class User is done by parameterisation, i.e.
each instance is identified by a userId of type nat. As User is the base class of
a specialisation hierarchy, the objects will either have a special aspect Staff or
Operator. In the behaviour part, we give an example for a calling from an object of
class Staff (identified by the userId of the base class) to a certain object of class
Application which can be reached via the aggregating object IG34 through ”dot
notation”. Whenever the action createExperiment occurs in Staff, the action
newExperiment in Application is called which in turn calls the birth action of
class Experiment (see Figure 3.6).

The community diagram contains the aggregated object class Group which rep-
resents Group 3.4 of the PTB. It has object classes Application, Company and
Standard as components, whereby Application itself has Experiment as such.
Aggregation is represented by a diamond and the dot at the top of some of the ob-
ject classes denotes multiple components. For example, each application may own a
number of accompanying experiments, locally identified by their experiment number
(expNr). We wil now take a look at object class
application. The object class Application as shown in Figure 3.6 has several
Experiments as components, each one is identified by a unique experiment number.
It contains four attributes: company is an object valued attribute, i.e. a link to
object class Company. In contrast to components, objects referenced by attributes
are not embedded in the classes where the attributes are declared.

The second attribute labour has a user defined data type labours which is not
specified here. appl date is a constant attribute which means that once the data is
set, it can never be changed again.

The third attribute nextExpNr is initialised with one and is hidden, i.e. it is
only visible inside the object class Application. It stores the next number used to
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identify the experiments belonging to this application. Furthermore, there are two
actions: createAppl is a birth action that creates an object of class Application. It
has all attributes of the class as parameters, excluding the fourth attributenextExpNr
which is automatically initialised. newExperiment calls the birth action of the com-
ponent class and increases nextExpNr. Finally, a constraint assures that there are
not more than nine experiments for each application.

object class Application
components
Experiments(expNr:nat):Experiment;

attributes
company : |Company| constant;
labor : labors;
appl_date : date constant;
nextExpNr : nat initialized 1, hidden;

actions
*createAppl(comp:|Company|, dat: date, lab:labors);
newExperiment(nam: string, st:msset, !expNr: nat);

behavior
createAppl(comp, dat, lab)

do
company:=comp,
appl_date:=dat,
labor:=lab

od;
newExperiment(nam, st, expNr)

do
Experiments(expNr).createExp(nam, st),
expNr:=nextExpNr,
nextExpNr:=nextExpNr+1

od;
constraints
nextExpNr<10;

end;

Figure 3.6: Object Class Application

Now we will take a look at another part of the system, namely joint process. First
we briefly explain some technical notions which are necessary for the understanding
the specification. joint (see Figure 3.1) is the place where corresponding surfaces of
two parts of an enclosure come together and prevent the transmission of an internal
explosion to the explosive atmosphere surrounding the enclosure [HO71].

In Figure 3.1 we will illustrate a test surrounding for joint tests. The main
components to measure and estimate joints according to the standard given are the
width and the gap of a joint. The width of a joint is the shortest distance from the
inside to the outside of an enclosure. The gap of a joint is the distance between
the corresponding surfaces when the electrical apparatus has been assembled. The
prototype tests on flame proof is comprised of tests on the ability of the enclosure
to withstand pressure and of tests on the non-transmission of an internal ignition.
Therefore, the enclosure is placed in a test chamber called autoclave and some
explosive mixture is introduced into the enclosure.

The European Standard specifies the design of flame proof joints in detail. Dur-
ing the testing procedure it is important to compare the standards values of the
widths and gaps of the joints with the applicants value resulting from the explosion
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Figure 3.7: Table of Flame Path Joints

tests.

Process of jointTest

There are two groups: staff and operators who can manipulate joints. The
applicant, i.e. the person who wants some device to be certified sends the table of
flame path joints to thr PTB (see Figure 3.7). There are three different kinds of
values:

• Columns 2-4 give the data according to EN 50018

• Columns 5-8 include data according to construction drawings

• The last three columns of the table are values resulting from tests.

The staff compares the data according to EN50018 with construction drawing
and decides whether the values are satisfactory. The operators verify the values
provided by the applicant and report their results to the staff. The staff is responsible
for the assessment of the values measured by the operator.

A part of the community diagram of the CATC system (see Figure 3.3) is depicted
in Figure 3.8. It consists of the object classes JointNode, JointTable, Joint,

ExpJointPart, ConstJointPart and JointPart (the same Object class
tt joint processing as in Figure 3.3).

JointNode is the object class that models the special part of CATC concern-
ing joint tests. In this universe, we have joints and joint tables. We simplified
the specification to one joint table and several joints. The diamond stands for ag-
gregation of objects and the triangle is the diagrammatic notion for specialisation.
Thus a JointNode object is an aggregation of one JointTable and one or more
Joints. A JointTable has a list of joints as attributes. This is modelled as an
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JointTable 

ConstJointPart

JointPartJoint

Joint(JointNr)

JointNode

ExpJointPart

JointTable

[1,3]

[1,2]

Figure 3.8: Fragment of the Object Community Diagram of CATC

object-valued attribute. Joints can be constructed of several parts, constructive
parts (ConstJointPart) and experimental parts (ExpJointPart). As already men-
tioned, the constructive part is concerned with comparing data according to the
standard with data according to the construction drawing. The experimental part
deals with the results of test measurement. Up to five parts can belong to one joint
which form one row in the table of flame path joints (see Figure 3.7). There may be
one to three constructive parts and one to two experimental parts. The object class
JointPart depicts a specialization, which consists of those attributes and actions,
the constructive and experimental parts have in common.

The interfaces of the objects specified in the comunity diagram are specified in
Figure 3.9.

cons: map (range (1,3)) to ConstJointPart

Joint

row : /derived 

* create

esp: map (range (1,2)) to ExpJointPart

Figure 3.9: Object Declaration Diagram of JointPart

For each object class an attribute and an action alphabet has to be specified. The
attributes represent the observable state of an object of that class. Actions model
the operational interface of the objects. The actions are declared by a classwide
unique identifier and a list of parameters. Actions that create new objects are called
birth actions and are indicated by an *. The life of an object is terminated with the
occurrence of a death action. Such actions are marked with an +. The longterm
behavior of objects is specified in Figure 4.3).

Staff objects are born by login and by it they are in the “NoJointTable” state.
This is the beginning of the lifecycle of a staff object. It may logout immediately
after login and by this will leave the system. Logout is the death action of a staff
object. After a login a staff object may build a joint table. By this action the life
cycle state changes to the “JointTable exists” state. Now it can work with the joint
table, e.g. print it or do other things not specified here. From this life cycle state,
a staff object may logout or remove the joint table. The latter action will change
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end

start

No JointTable

login

print JointTable

remove JointTable

logout
logout

build JointTable
JointTable exists

Figure 3.10: Object Behavior Diagram of the Staff

JointNode

createJointTable

createJoint
Joint

createJoint

createJointTable

JointTable

Figure 3.11: Object Communication Diagram between JointNode, JointTable

and Joint

back to the life cycle state where no joint table exists.
The communication between JointNode objects and JointTable and Joint ob-

jects is depicted in Figure 3.11. The action createJoint of a JointNode object
causes directly a create action of a Joint object. The action createJointTable of
a JointNode causes a create action of a JointTable.

Now will take a look at textual specification of our object classes. We started
with the object class JointNode.

object class JointNode

attributes

JNr: nat initialized 1;

components

Joint(nr:nat) : Joint;

JointTable : JointTable;

actions

* new;

createJoint;

createJointTable;
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behavior

createJoint

do Joint(JNr).create; JNr:=JNr+1 od;

createJointTable

do JointTable.create od;

end;

There are two components: A joint node has several joints which are identi-
fied by a number (Joint(nr:nat)) and a joint table (JointTable) as components.
Moreover, an attribute JNr is specified to save the current joint number. The initial
value of the attribute is 1. Thus, after a JointNode has been created by new, JNr
has value 1. There are two actions specified, one for creating joints another one for
creating a joint table. The former one takes the current joint number JNr, incre-
ments JNr, calls synchronously the birth action in Joint, and assigns the new joint
to the name Joint(JNr). These birth actions are specified in the corresponding
object classes, i.e. JointTable and Joint, respectively.

object class JointTable

attributes

Joints : list(Joint);

actions

* create;

insertJoint(j:Joint);

behavior

insertJoint(j:Joint)

do Joints:= append(Joints,j) od;

end

The object class JointTable has a list of joints as attributes. These are object-
valued attributes. In contrast to components, object-valued attributes do not belong
to JointTable, instead they are readable from JointTable. In this sense, object
valued attributes are links to other objects such that their attributes can be read
and used for some computations or their actions can be called. Besides the creation
action, there is one action specified to append new joints to this list, i.e. to append
further links. insertJoint is the action which takes a joint as parameter and
appends this joint to the list Joints.

Before we specify Joint we introduce the object classes ConstJointPart and
ExpJointPart, as well as the generalization of both JointPart. The object class
JointPart comprises all attributes which are also part of the specialisation. Every
joint has a gap, a width, and further attributes named a, b, etc. See the table of
flame path joints in Figure 3.7 where these attributes appear. The creation of a
JointPart is parameterised by the necessary values for the joint attributes and an
indication, if the joint shall be an explosion joint or a constructive joint.

object class JointPart

attributes

gap : real;

width : real;
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a : real;

b : real;

...

actions

* create(kind:enum(constructive,explosion),

gap:real,

width:real, a:real, b:real, ...)

...

end;

The object classes ConstJointPart and ExpJointPart are specialisations of
JointPart which have further attributes. In principle inheritance in Troll is
monotone. This means, that we carry over all axioms of the superclass into the
subclass. The behavior of the subclass is in full compliance with that of the super-
class. For our case study, we specialize JointPart to ConstJointPart which has
an additional derived attribute:

object class ConstJointPart

aspect of JointPart if create(kind, gap, width, ...)

kind = constructive; attributesl : real derived(a+b); actions... end
Now we come to the object class Joint:

object class Joint

components

cons(1..3) : ConstJointPart;

exp(1..2) : ExpJointPart;

attributes

row : list(record(a: real, ..., gap:real, l: real))

derived concat(toList(select jp.a, ..., jp.gap, jp.l

from jp in range(cons)),

toList(select jp.a, jp.b, ..., jp.gap, 0.0

from jp in range(exp)));

actions

* create;

...

end;

An object of class Joint has up to five components. Three components are
constructive joint parts and another two are experimental joint parts. The former
ones are those which will be derived from the construction drawings, whereas the
latter are fixed by explosion test done by the operators in the laboratories. There
is an attribute called row for joints. This attribute corresponds to one row of the
table of flame path joints in Figure 3.7. The sort of this attribute is quite complex
because in row the information of all components are collected. We specified a
select statement to extract this information and in this way exploited the logic
calculus which provides concepts for querying object states. We explained this by
starting from the innermost select clauses: the select clause returns a bag of records.
Each record incorporates five real numbers representing width, gap, etc. of one
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joint. We query the constructive joints as well as the experimental joints. We get all
joints by the implicitly defined operation range. Range gives the set of all elements
of the co-domain of the declared component, i.e. all existing component objects.
Here, range(cons) delivers all constructive joint parts. We selected the values of
the attributes and transform the bag to a list. To concatenate experimental and
constructive joint part list, we introduced 0.0 as l (length) value of ExpJointPart.
The result of this concatenation is one row.

Until now, we only specified object classes. Thus, we still have no object in-
stances. These will be generated by declaring the system’s objects. We simplify
our sets of instances such that we have one object of class staff and one object
of class JointNode. The object identifiers may be parameterized. Thus, we can
declare infinite sets of objects. The Troll specification of staff corresponds to
the behaviour diagram in Figure 4.3.

object class staff

actions

* login;

newJoint;

buildJointTable;

...

end;

objects JN:JointNode end;

objects user:staff

behavior

newJoint

do JN.createJoint od;

buildJointTable

do JN.createJointTable od;

end;

We showed a simplified part of specification of CATC, the whole specification
of THE CATC system is carried out in [Goe97, Him97]. Especially the hardware
specification is given in [Hoh96, HS94b, Sha96]. The adminstration part is carried
out in [Saa96].
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Chapter 4

Methodological Concept of Troll

Troll is a formal object oriented specification language for modelling and designing
of distributed information systems. It incorporates many ideas based on experience
made in developing the OBLOG family of languages and their semantic foundation
[SSE87]. Troll1 [JSHS91] is a dialect which has its roots mainly in an early textual
version of OBLOG. It was formerly known as oblog+. Trolllight [GV96] is a sim-
plified version of Troll with an operational process language for object life cycles.
Trolllight is available with a development environment offering special tools for
verification and validation. Troll2.0 [HSJ+94] has several restrictions with respect
to Troll1 such as the absence of roles [DHS94]. Troll 3.0 which will later be
discussed here is devoted to modelling distribution issues. It has been designed with
the aim of being executable. The Troll approach supports the declarative speci-
fication of conceptual models. It integrates concepts of dynamic modelling aspects,
structural aspects and process aspects and is based on a Distributed Temporal Logic
(Dtl) [Ehr96, DE97, ECSD98] which is a special temporal logic that describes prop-
erties of distributed objects. In the last eight years, much work has been carried
out on these theoretical foundations [SSE87, ESS88, EJDS94, DE95, ES95] and its
methodological issues [SJ92, SJH93a, HJ95, HKSH94, JSHS96]. Troll allows for
a descriptive modelling of complex systems [HJS92, HJSE92, HJS93b, SH94] and
incorporates concepts from the object oriented method, conceptual data modelling
and process modelling [JHS93, HJS93a, HS93, HHKS94, SHJ+94]. Aside from the
textual notation, a graphical syntax was proposed in [WJH+93, JWH+94]. The use
of this diagrammatic presentation allows an easy transition from informal to formal
specification documents. This has been the prerequisite for a wide acceptance of
Troll as a software engineering method [SJH93b, HS94a, HJ94, HJ95, ZH94]. A
set of tools to support the Troll method has been developed and integrated into a
workbench [Gra01]. In this chapter, we first introduce Troll 3.0 and its graphical
notation. Next, we present the guidelines supporting the modelling with Troll
and explain them by example. Finally, we briefly show the workbench.

4.1 Introduction to Troll Version 3.0

Structure of Specification Documents.

A specification document describes a system world and is named an object
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system. An object system consists of the following basic elements:

• Definition of problem specific data types

• Specification of object classes

• Declaration of system objects

• Specification of system global interaction rules.

Any number of appearances of these elements and in any sequence order may be
found within a system specification.

4.1.1 Data Types

Data types definitions are used in Troll to build new data types from already ex-
isting ones. Among the data types predefined in Troll we can distinguish between
simple and complex data types.

Simple Data Types

Simple standard predefined data types in Troll are bool, nat, int, real, date, char,
string and for which the usual operations are available. With the help of data
type constructors, new problem specific data types can be defined. The most simple
constructor is the enumeration type, enum(id12...idn) whose values are shown by the
symbols id12...idn.

Example:
data type type of materialenum(plastic, elastomer)

The only operation for enumeration types is the conformity test. Further problem
specific data types may be defined by the specification of an identifier coupled to an
existing data type. The identifier may be used within the specification as an alias to
the type. Another constructor available in Troll is the record type, which allows
the definition of data tuples.

Example:
data type addressrecord(street : string,

house no. : string,
postal code : nat,
place : string,
country : string)

Complex Data Types

Troll allows the use of constructors to build complex multi-valued data types.
These constructors are list(t), set(t), bag(t), map(id:t1,t2). For a more detailed de-
scription of these constructors and their manipulation operators we refer the reader
to [DH97].

Data terms are built by variables, attributes and constants which may be com-
bined through operators defined for their corresponding data types. A very useful
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data term is the query term: “select term from range where condition” which is
similar to the query term defined in SQL.

Example:
select e.name from e in rng(employee) where e.address.place=”Braunschweig”

This query returns a set with the names of all employees living in Braunschweig.

4.1.2 Object Classes

The basic elements of a system to be described are objects. An object class rep-
resents the abstract description of similar objects. An object class is described by
an object class specification. It contains an interface or signature declaration and
a behaviour definition. Part of the signature is the declaration of attributes and
actions: attributes indicate the characteristics of the objects while actions define
the operational interfaces of an object. The behaviour corresponding to the actions
is defined in the behaviour part. An object class declaration has the following form:

object class Name

[specialisation condition]

[components component declaration]

[attributes attribute declarations]

[actions action declarations]

[behaviour behaviour declarations]

[constraints constraint conditions]

end;

Object classes may be complex. They may be specialisations of other classes
(is-a relationship) or have other classes as components (part-of relationship). The
behaviour of an object is defined by the description of rules for the actions and the
declaration of integrity constraints. Next we will describe each element in further
detail.

Attributes

All attributes are listed after the keyword attributes. An attribute declaration
contains the name of the attribute, its data type as well as optional characteristics.
The following attribute characteristics are permitted in Troll:

• initialized

• constant

• derived

• hidden

• optional.

These characteristics may only be used for attributes and are not available for
local variables.
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Actions

Actions change the state of an object by altering the value of the attributes. They
represent the basic element for specifying the allowed object development. All action
declarations are listed after the keyword actions. An action declaration contains the
name of the action and an optional parameter list. Output parameters are denoted
by the symbol “!” in front of the action name, birth actions by the symbol “*” while
death actions are given by the symbol “+”. All other actions are considered update
actions. By using action calling, the objects have the ability to communicate with
each other and to observe certain rules. All actions which are marked with the key
hidden can only be accessed locally.

Aggregation

Objects containing other objects are called complex objects. Each component object
can only belong to one complex object. Components do not have an independent
existence. They depend existentially on the general object to which they belong.
For single components, only one instance of a component can exist for a complex
object. For multiple components, the different component instances are uniquely
identified through parametrised names. Complex objects may have access to all
attributes and actions of their components.

Example:

object class IG34

components applications (appl.no.):application

...

end;

The object class IG34 has the object class application as a multiple component.
With the component name application and the parameterappl.no. for the compo-
nent, various instances of application can be utilised.

Specialisation

Objects may also be declared as specialisations of other objects. A specialised class
represents a particular aspect of a basis class. For the specification of a speciali-
sation class, a basic class and a full list of specialisation conditions must be given.
The specialised objects inherit the attributes and events of the general objects and
can own further attributes, actions and constraint conditions. The subclass decla-
ration is provided with an additional keyword aspect which refers to the superclass.

Example:

object class material
...

actions ∗initialize plastic (Wdata: initmaterial
∗initialize elastomer: (Wdata: ... )
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...
end;

object class elastomer
aspect of material if initializeelastomer ...
end;

object class plastic
aspect of material if initializeplastic ...
end;

In this example, the object class material is the superclass of the subclasses
elastomer and plastic. Material defines two different birth actions: one for each spe-
cialisation class. The subclasses specify the respective birth actions as specialisation
conditions.

Object Life (Behaviour)

The life of an object starts with a birth action and ends with a death action. Before
the birth or after the death of an object, its characteristics can not be observed nor
can its actions be called because the object is in a non-defined condition. An object
class may declare several birth or death actions, but during an object life, only one
birth and death action may happen.

The following example shows the object class definition of the explosion test
stand. It has objects of classes measurement system and remote controlling of valve
as single components. For every instance of the explosion test stand, one instance
of measurement system and one instance ofremote controlling of valve exist.

Example:

object class explosion test stand

components
measure: measurement system;
controlling: remote controlling of valve;

actions
∗ set-up (conf.: explosion test stand configuration);
+ remove;

behavior
set-up (conf)

do measure:SET UP(conf.measure),
controlling.set-up(conf.controlling)

od
remove

do measure.remove
controlling.remove

od
end;
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Constraint Conditions

The constraints part of a class declaration establishes integrity conditions which
restrict the possible values of attributes. Troll makes a distinction between initial
and static constraints: initial conditions are checked only at the birth of an object,
static conditions must be fulfilled in each object state.

4.1.3 Declaration of System Objects

An (object system) consists of a quantity of objects which belong to object classes.
All interactions between objects of different object hierarchies are specified outside
the classes, in the system specification part which is initiated by the keyword be-
haviour. In the area of communication, the access to attributes and actions of
different Troll object classes is strongly limited. An access is only allowed in a
hierarchic direction, i.e. from top to bottom. Troll version 3.0 makes a distinction
between two types of communication:

1. communication between complex objects and its components

2. communication between concurrent objects (system nodes).

The communication between a complex object and its components is specified
within an object class. Aggregated objects have access to actions and attributes of
its components, but not in the reversed order. Communication between concurrent
objects refers to objects which exist on a parallel basis and are independent of each
other.

4.2 The Graphic Notation OMTroll

This section explains the graphical presentation of Troll specifications. The ad-
vantages of a graphical presentation lie mainly in a better illustration of complex
and global relationships. A graphical notation is especially adequated for giving
a first overview of the system and for communication between users and develop-
ers. In order to give graphical support to Troll a notation called OMTroll was
developed. OMTroll combines concepts of Troll with graphic elements of the
popular Object Modelling Technique (OMT). The language elements of OMTroll
are divided into five different diagrams:

1. Community Diagram

2. Object Class Declaration Diagram

3. Object Behaviour Diagram

4. Communication Diagram

5. Data Type Diagram.

In the following, we will describe briefly each of these diagrams.
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Figure 4.1: Class Declaration Diagram

4.2.1 The Community Diagram

The community diagram gives an insight into the object classes of a system and
their relationships. It illustrates the static structure of the system. An object
class is represented by its name put into a box (see Figure 4.1). Component and
specialisation relationships are denoted by diamonds and triangles respectively.

4.2.2 The Object Class Declaration Diagram

An object class declaration diagram must be designed for every object class of the
community diagram. It contains all attributes and actions which refer to the object
class. The diagram consists of a box divided into three areas: the class name, the
declaration of attributes and the declaration of actions. Object declaration diagrams
and the community diagram are usually represented together. Figure 4.1 gives an
example of the IG34 system.

4.2.3 The Communication Diagram

The communication diagram shows the communication structure between the ob-
jects of the system. Figure 4.2 shows an example for the communication between
the object class IG34 and their text block and product group components, e.g. the
action store product group of the complex object IG34 calls up the action create of
the product group.

4.2.4 Object Behaviour Diagram

One can explicitly define the life cycle of an object by object behaviour diagrams.
Figure 4.3 shows a behaviour diagram. Nodes in the diagram represent the possible
states of an object. Edges between nodes represent state transitions and are labelled
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Figure 4.2: Communication Diagram

with the action that causes the state transition. Additionally, constraints can be
attached to the state transitions. Behaviour diagrams are similar to Harel state
charts [Har88].

4.2.5 Data Type Diagram

Data type diagrams represents user defined data types. Apart from predefined data
types, Troll allows the use of constructors for building complex data types.

4.3 Guidelines

Guidelines support developers during the software development process. We have al-
ready defined such steps in [Kow96, DH97]. Subsequently, we need various methods
for an information system such as CATC to form a global method with a universal
character. The questions that arise are: why do we need a new method? Can we
not use an informal method together with the Troll notations? Our experience
with an informal object oriented method in this project was negative. The need for
an abstract model to cover all aspects of the complex system CATC is not satisfied
by informal methods. One of the main problems of the informal method is that
they require the designer to reflect about possible implementation aspects. Our ap-
plication domain and its data are too complex to mix design and implementation
without loosing the global view of the system. Furthermore, our requirements were
not supported by such an informal method. During the phase of modelling and
implementation of our case study, we analysed the individual models and the case
study was used to precisely find our own method. Then, we tried to find out in which
way to model results in order to better understand the problem. For this process,
empirical data was collected. Further, we had to combine different procedures in
order to develop a method that could test our complex information system CATC
according to correctness and efficiency. We derived the following guidelines from our
experiences during the whole process of our case study. These can be summarised
in the following steps:

• Finding objects and classes using object declaration diagrams

• Describing the static structure by means of community diagrams

• Representing interactions between objects using communication diagrams
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Figure 4.3: Behaviour Diagram
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• Expressing the behaviour of the objects through behaviour diagrams

• Extending the object and data diagrams

• Transforming the specification into the relational model and C++.

In order to specify a system, the following steps can be set up to an overall
process description:

Specifying a new System

• Defining the nodes of the system

1. Hardware node

2. Application node

3. Domain node

• Describing the static structure of each node of the system

1. Finding objects and classes

2. Defining data types

• Defining global interactions between objects in different nodes as well as locally
in the same node

1. Declaration of attributes

2. Definition of necessary actions

3. Definition of birth and death actions

• Expressing the behaviour of the objects (the first time only graphically)

1. Describing the hardware elements (trivial)

2. Defining the business process (complex)

• Refining object declarations

• Validating the specification

What we are trying to emphasise is that

• Formal methods can be applied in a practical and adequate way

• Troll may be a part of the development process of complex information
systems.

As already mentioned in Chapter 2, software life cycles are an important part of
the development process. Because Troll is a formal object oriented specification
language and is designed for the conceptual modelling or requirement specification
phases, our guidelines just need to be understood for these phases, although we used
Troll successfully during the whole process.

The guidelines are defined as follows:
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• Find out the concurrent objects (the nodes of the system). They ”live” inde-
pendently of each other and only have communication relationships.

• Describe the static structure for each node in the system (components and
specialisations).

• Define the signature of the object classes (not only birth and death actions)

• Define user defined data types (simple and complex data types).

• Describe the global interactions and entailed local communications (direct call-
ing and indirect calling).

• Extend the signature of the object classes.

• Express the local behaviour of each object class (life cycles, effects on at-
tributes, constraints).

• Validate the specification.

Some hints for the correct application of the guidelines are:

• Distinguish between user interface node, information node, hardware node

• Make dialogue boxes as components of the user interface node

• Define two different actions for dialogue boxes:

1. Close the dialogue boxes

2. Delete the dialogue boxes

• Specifying behaviour diagrams for the hardware is not very useful

• Apply C++ and RDM transformation rules.

An important issue concerns the communication between object classes. Objects
communicate via action calling. In Troll action calling is directed and syn-
chronous. We have to distinguish between two kinds of communication: (1) a com-
munication between a complex object and its subobjects and (2) a communication
between concurrent objects.

We will present our results by example. The case study is introduced in the
next subsection. The specification of the case study using the Troll guidelines is
explained in Section 4.4

4.3.1 Running Example: Remote Controlling of Valves

VENTIL1 is a programme to remote control and monitor explosion test stands in
the test laboratories (see Figure 4.4). It is part of the experimental test software of
CATC (see Figure 3.2).

1This is the German word for ”valve”
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Figure 4.4: Hand Valve

The critical places for an explosion transition are the joints, i.e. the places where
corresponding surfaces of two parts of an enclosure come together and result in a
gap. For a flame-proof enclosure, each gap must be narrow enough so that only
flame-proof joints are formed [ORW83].

The main equipment of an explosion test stand contains a gas source, the auto-
clave, analysis tools, pumps and valves. All of these devices are connected in a net
of tubes and pipes. Figure 4.5 shows a schematic view of the smallest explosion test
stand in the test laboratory, the so-called Ex–Eva2. VENTIL is used to control and
monitor most of the devices of the Ex-Eva in order to create an explosive atmosphere
in the autoclave. The actual measuring of explosion pressure during an experiment
is done separately [Hoh96, Sha96].

Aside from the obvious tasks of allowing users, i.e. testers, to mix gases, open,
close, and monitor valves, turn on and off pumps etc., VENTIL provides two more
advanced features: the automatic observance of dependencies between devices and
the calculation of the gas flow.

Observance of Dependencies

VENTIL prevents operators from accidentally violating dependencies between
devices. Dependencies are rules which must be observed to protect the equipment
and the environment (including the operators themselves) from the explosion test
stand. The dependencies can be formulated as a kind of ”master-slave” function
where one device depends on the state or state change of one or more other device(s).

The following dependencies (to which we will refer throughout Subsection 4.4.2)
are needed to protect the fragile oxygen analyser of the Ex-Eva (cf. Figure 4.5) from
extreme pressure and soot developed in the autoclave during an explosion:

1. Valve 31 may be open if and only if valve 26 is open

2. Before valve 31 is opened, valve 34 is opened automatically

3. Before valve 34 is opened, valve 35 is opened automatically

4. One second after valve 31 has been closed, valve 34 is closed automatically

2Explosions–Versuchs Anlage (German for ”explosion test stand”)
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Figure 4.5: Schematic View of the Ex-Eva. Vxx denotes a valve.

5. After valve 34 has been closed, valve 35 is closed automatically.

Calculation of the Gas flow

In a schematic display similar to the one of the Ex-Eva in Figure 4.5, VENTIL of-
fers the testers a calculated view of the gas flow in the test stand. This calculation is
very important and depends on parameters like the expected - but not yet measured
- gas pressure and the pumping direction of the pumps. We will not go into the
details of the parameters and will instead use significantly simplified requirements
for the visualisation of the gas flow here:

• A gas flow may begin or end at any gas entry or exit point of the test stand,
e.g. exit into the atmosphere, into the gas mixer, into the reservoir, into the
autoclave or into the pressure sensor. This is generally referred to as endpoints.

• There must be an ”open way” from one endpoint to another, i.e. all valves
need to be open and pumps turned on during gas flow. All other devices such
as the oxygen analyser do not influence the gas flow and are therefore simply
treated as pipes here.

Nevertheless, these reduced requirements will still be sufficient to present the
implications of the gas flow calculation as far as this thesis is concerned. An extended
description is given in [Sch96a].
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4.4 Specification of VENTIL using Troll Guide-

lines

The main components of the Troll specification of VENTIL are presented in this
section. First, a general overview of the object hierarchy of the information system
nodes is given. Afterwards, the two most interesting parts of the specification are
treated in detail: the observance of dependencies and the calculation of the gas flow.

4.4.1 Overview

Defining the nodes of the system

The specification of the VENTIL system is made up of three nodes (see Fig-
ure 4.6), namely the user node, the hardware node and the information system
node. The user node describes the possible behaviour of the different user groups
(testers, technicians etc.) and their interface to the main system. For instance, in
the Tester3 the object class - which is a part of the user node - specifies that valves
can be opened and closed and which data must be provided for the gas mixer. These
specifications solely focus on functionality and data and are therefore abstractions of
possible implementations (like dialogue boxes or other user interface elements). Dig-
ital outputs, e.g. ”open valve”, digital and analogue sensors (”valve is open”, voltage
representing measured pressure) etc. are modelled in the hardware node. One merit
of specifying VENTILin Troll is the possibility to examine the information system
node which is isolated from the other nodes and describes user interaction [Sch96a]
and hardware behaviour [Hoh96].

In this thesis, the hardware and user nodes and their global interactions will not
be treated any further. We will only discuss the specification of the information
system node, beginning with the introduction of its object classes in the remainder
of this subsection.

Describing the static structure of each node of the system

The Community Diagram in Figure 4.7 gives an overview of the component and
inheritance hierarchies used in the information system node of VENTIL.

The Object Class Knot

The calculation of the gas flow requires the most complex algorithm in VENTIL.
Hence, the structure of the specification was designed to suit this algorithm best.
¿From Figure 4.5 and its description, it is obvious that gas flow can be formalised
as a path in a directed graph representing the explosion test stand. The nodes of the
graph stand for the devices. Subsequently, devices also subsume the joints between
two or more pipes and the entry and the exit points of the test stand, e.g. the
external gas supply of the test stand and the vertices for its pipes4. Although pipes
are generally undirected, the graph’s vertices need to be directed here because gas

3throughout this thesis, we will print all terms referring to the Troll specification in
typewriter font and Troll keywords in italics.

4To simplify reading, we will no longer distinguish tubes from pipes.
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Figure 4.6: OMTroll Community Diagram of CATC. The triangles symbolise
inheritance, the diamonds components.

can only flow one way, determined by the pumping directions of the pump and the
gas mixer.

All basic properties of a node in the graph are modelled abstractly, i.e. instances
of the object class Knot are not possible. It is a superclass of object classes repre-
senting a concrete device5. Hence, the devices become nodes of the graph, but do
not need to take care of their connections to other nodes or their behaviour during
the gas flow calculations themselves. Each device class inherits the basic properties
of a Knot. Evolution within these properties does not have any effect on object class
apart from Knot, thus facilitating the maintenance of the specification a great deal.
All devices, including those which may be added to the test stand in future, reuse
the specification of Knot and are therefore modelled more quickly and understand-
ably. Furthermore, a Knot does not need to know to which types of devices it is
connected because it does not need any specialised properties from its neighbour
Knots.

The Object Classes MutableKnot and ImmutableKnot

Devices like the oxygen analyser or pressure sensors can not be manipulated
through VENTIL. With regard to their Status in the gas flow, those devices
are always open. They are modelled as subclasses of the abstract object class

5While discussing the specification of VENTIL, we will use the name of a real-world object which
is synonymous to its representing Troll object, e.g. by ”valve 31”, we generally mean ”the object
representing valve 31 in the specification”. The few exceptions are made clear by phrases like ”the
hardware of valve 31”.
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Figure 4.7: Community Diagram of the Information System Node of VENTIL.

ImmutableKnot which is a subclass of Knot (see Figure 4.7). ImmutableKnot con-
strains the Status to open (see the object behaviour diagram on Figure 4.8c) and
disables the inherited switching operation. Devices that can be controlled by testers
such as valves and pumps also have a common abstract superclass, MutableKnot.
Obviously, only MutableKnot may need to observe dependencies because only if the
state of advice is mutable, it can depend on the state of another device. Hence, the
observance of dependencies is dealt with in MutableKnot.

The Device Object Classes

The different device classes of the test stand are modelled as separate object
classes in VENTIL. Each of these object classes is a subclass of either MutableKnot
or ImmutableKnot and hence indirectly a subclass of Knot. Several device object
classes have components specifying hardware interfaces. By convention, the names
of hardware interface classes end on HWI. For instance, ValveHWImodels the interface
to an object class within the hardware node of VENTIL. ValveHWI provides actions
to open and close a valve and to check the current status of the hardware etc.[Hoh96].

Defining global interactions between objects in different nodes
as well as locally through the same node.

Fulfilling Duties

The declarations of MutableKnot, as far as the observance of dependencies is
concerned, look like this:

object class MutableKnot
aspect of Knot on ... -- Knot is the superclass of MutableKnot

attributes DutyList : set(duty);
DelayedDutyList : set(delayedDuty);
...
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Figure 4.8: Object Behaviour Diagrams: (a) Valve, (b) Pump, (c) ImmutableKnot.

actions AreDutiesFulfilled(trigger:switch, ! now:bool, ! before:bool)
FulfillDuty(duty:duty)

FulfillAllDuties(trigger:action, exec:execution)

FulfillDelayedDuties()

Switch(action:switch, duties:set(duty))
...

end;

AreDutiesFulfilled returns (denoted by a ‘! ’) for a given action whether all
now and before dutys in the DutyList are fulfilled. The return values are used
by the switching operation of specialised ImmutableKnots to determine whether the
desired action is allowed now or later or must be rejected. FulfillAllDuties calls
FulfillDuty to fulfill all dutys in the DutyList for the given trigger and exec

parameters, e.g. to fulfil all dutys before the MutableKnot is activated. Similar to
FulfillAllDuties,FulfillDelayedDuties is used to process the delayedDutys in
the DelayedDutyList as soon as their delay time has expired. The action Switch

is inherited from the superclass Knot (see Subsection 4.4.1). Here, we introduce
the second parameter, the set duties. All members of duties are added to the
DutyList. Usually, duties is empty, but to fulfil a before duty, one new duty is
passed.

Expressing the behaviour of the object (the first time only graph-
ically).

Figure 4.8 shows the Object Behaviour Diagram of Valve; due to mechanical
malfunction, any state transition is possible. The Status of a pump can only either
be open (turned on) or closed (turned off) (see Figure 4.8b) and it is enforced
by a constraint. The Type and Status attributes and the actions FindFlowNo and
FindFlow are needed in the gas flow calculation.

The enumeration switch generalises the notions of ”opening a valve”, ”turning
on a pump” etc. to activate the respective counterparts to deactivate. It is used
as the first parameter to the action Switch which is overloaded in any subclass of
Knot to perform the required task for the individual subclass. Finally, the Name is a
user-defined identification of a Knot. It is simply a three character string like ”V11”
for valve 11. For every operation if a user wants to work on a specific device, he
inputs the Name to denote the device.

Refining object declarations

The Object Class Gas flowGraph
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The management of our graph and the initiation of the gas flow calculation are
modelled in the object class Gas flowGraph. The part of its specification relevant to
this thesis is defined as follows:

object class Gas flowGraph

components Valves: map (names) to (|Valve|);

Pumps: map (names) to (|Pump|);

...

attributes Knots: map (names) to (|Knot|) derived
Knots(name):= select knot from knot in dom(Valve)+dom(Pump)+...

where knot.Name = name;

actions Gas flow();

Gas flowNo(no:nat, knots:list(|Knot|), flow:set(|Knot|),
! newFlow:set(|Knot|))

;

constraints all name in names (

cnt(select knot from knot in dom(Valves)+dom(Pumps)+...

where knot.Name = name) <= 1);

end;

In the components section, parameterised components are declared for each of
the device subclasses of Knot. The parameter domains are always the range of
possible names for Knots. In Troll, it is necessary to specify the exact class of
a component and not just one of its superclasses. It is therefore not possible to
have one parameterised component containing instances of any of the subclasses of
Knot. But since all names within a test stand are supposed to be unique even for
different device classes, a well-defined map from names to Knots is required. This is
achieved through the constraint given above. It states that each name may appear
at most once in the union of all domains, i.e. the current existing instances of the
parameterised components. Convenient access to the map from names to Knots
is provided by the derived attribute Knots. The two actions Gas flow and Gas

flowNo initiate the search for gas flows in the graph.

4.4.2 Observance of Dependencies

Classification of Dependencies

The formalisation of dependencies leads to a distinction between three classifications:
static, dynamic and delayed dependencies6.

Static Dependencies involve at most one state change in one device. This state
change depends on the state of another device which is only observed, but not
changed. Example 1 is a static dependency:

Example 1 Valve 31 may only be open - if and only if - valve 26 is open.

6Following the vocabulary of the engineers in laboratory 3.41, there is also a fourth type of
”dependency” in the original requirement analysis. But its formal definition revealed that it must
be treated differently from the other three [Sch96a].
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Dynamic Dependencies always involve the possibility of two state changes in
two devices, as fast as possible. From the point of view of one of the involved
devices, there are three possible ways of executing their own change of state: before
or after the other device or both in parallel. Specifying the parallel and after cases
is straightforward. For the before case, a look will be taken at Example 2:

Example 2 Valve 35 must be opened before valve 34. The two following Troll
events must take place if valve 34 is commanded to open itself:

1. If valve 35 is already open, valve 34 opens and nothing else needs to be done.
Otherwise, valve 34 commands valve 35 to open.

2. As soon as the hardware of valve 35 is opened, its corresponding object is
notified and commands valve 34 to open.

Delayed Dependencies are special cases of dynamic dependencies: they involve
the possibility of two state changes in two devices, but introduce a delay time be-
tween the switching operations. Obviously, parallel delayed dependencies do not
make sense, thus leaving the before and after cases.

Delayed dependencies are treated similarly to other dynamic dependencies, but
another event must be added. Example 3 shows a delayed dependency:

Example 3 Valve 34 must be closed one second after valve 31 is closed. Listing the
required Troll events for the closing command on valve 31, we get:

1. Valve 31 closes.

2. As soon as the hardware of valve 31 is closed, its corresponding object is
notified. If valve 34 is already closed, nothing else needs to be done. Otherwise,
the delay time begins.

3. As soon as the delay time has expired, valve 31 commands valve 34 to close.

Modelling Dependencies with Duties

The observance of any type of dependency is modelled in a system of duties.
One dependency can result in a number of duties imposed on several devices (see
Example 1). Duties are specified as record types in VENTIL. They are stored as
attributes in the duty list7 of the MutableKnots they are imposed on. The duty list
is checked before any switching operation is applied to the device. A duty object
class is not helpful because all actions which process duties only modify attributes
of Knot, but never the values of a duty (except for creation and deletion).

Duty types are modelled as follows in Troll:

data type executionenum(now, before, parallel, after)

data type dutyrecord(trigger : switch,

exec : execution,

delay : time,
target : |Knot|,

action : switch,

once : bool)

7The name ”duty list” emerges during development, although no sequencing is needed. See the
declarations for MutableKnot below.
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data type delayedDutyrecord(time : time,
duty : duty)

The enumeration execution is used to distinguish static (now) from dynamic
dutys. In the latter case, the time of execution of the second state change is given
as either before, after or parallel to the first state change as explained above.
The first component of the duty record holds the information on which switch

the duty must be fulfilled, e.g. a duty with the trigger value activate imposed
on a valve must be fulfilled each time the valve is opened. The exec component
determines the type of duty. For before and after duties, delay holds the time
between the first and the second switching operation; a delayed dependency has a
value greater than 0. To fulfil the duty, action has to be passed to the switch

operation of the target. The flag once set for dutys must be removed from the
duty list as soon as they are fulfilled. A delayedDuty is an ordinary duty which
must be fulfilled at a certain system time.

Lead by the examples introduced earlier, we will now take a look at how these
actions work together and whether static, dynamic or delayed dependencies must be
fulfilled. Fulfilling a static dependency is as simple as expected. Example 1 requires
two dutys:

(activate, now, 0, Valve 26, activate, false)

imposed on Valve 31 and

(deactivate, now, 0, Valve 31, deactivate, false)

imposed on Valve 26.
While opening, the first duty must be fulfilled for Valve 31. The Switch action

of Valve 31 checks the Status of the dutys target, Valve 268. If Valve 26 is
activated, i.e. the Status of Valve 26 is not closed, the hardware of valve 31 can
be activated too. Otherwise, the switching command is rejected. Similarly, Valve
26 must check the status of Valve 31 before closing (according to the second duty

given above).

The dynamic dependency of Example 2 results in the duty

(activate, before, 0, Valve 35, deactivate, false)

imposed on Valve 26. What happens if the dynamic dependency of Example 2 must
be fulfilled as shown in the Object Communication Diagram on Figure 4.9?

In the first Troll event (continuous arrows), the Switch action is called to
open Valve 34. Switch uses AreDutiesFulfilled to find out that there is at
least one unfulfilled before duty and calls FulfillAllDuties with the parameters
activate and before. FulfillAllDuties calls FulfillDuty to fulfil all necessary
dutys, including the one of our example above. To fulfil the duty, Switch is called
for Valve 35. The arguments passed are activate to open the valve (this is done
by a call to the hardware interface object) and a set(duty) containing

8This is meant to be the identity of the object representing valve 26.
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Figure 4.9: Object Communication Diagram for Example 2 (dynamic dependency).
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Figure 4.10: Object Communication Diagram for Example 3 (delayed dependency).

(activate, after, 0, Valve 34, activate, true)

This new duty is added to the DutyList of Valve 35. As soon as the hardware of
Valve 35 is opened, the second Troll event is initiated (dashed arrows). Because
the event takes place after Valve 35 has been activated, the new duty must be
fulfilled and then deleted from the DutyList (the last component of the duty is
true). Fulfilling the duty results in the opening of Valve 34, thus we have Valve 34
opened after Valve 35 as required by the dependency.

Finally, we take a glance at Example 3 and the respective Object Communication
Diagram (Figure 4.10). The duty which is imposed on Valve 31 is

(deactivate, after, 1, Valve 34, deactivate, false)

If the duty must be fulfilled (event one, continuous arrows), the hardware of Valve
31 can be Closed immediately because we speak of an after duty. After Valve

31 is closed, it tries to FulfillAllDuties (event two, dashed arrows). It therefore
delays our example duty by adding

(current time + 1 sec),(deactivate, after, 1, Valve 34, deactivate, false)
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to the DelayedDutyList of Valve 31. As soon as the specified time is reached, the
third event takes place (dotted arrows): FulfillDelayedDuties calls once again
FulfillDuty, and Valve 34 is Closed, too.

Here is a part of the Troll specification of Knot:

data type vertexrecord(knot:|Knot|, flow:bool)
data type namesstring(3)

data type switchenum(activate, deactivate)

object class Knot

attributes Vertices: set(vertex) isConstant;
Type: enum(endpoint, through) isConstant;
Status: enum(closed, opening, open, closing);

Name: names;

actions FindFlow(visited:set(|Knot|), flow:set(|Knot|),
! newFlow:set(|Knot|), ! success:bool);

FindFlowNo(no:nat, vertices:list(vertex), visited:set(|Knot|),
flow:set(|Knot|), ! newFlow:set(|Knot|), ! success:bool);

Switch(action:switch, ...) -- for the second parameter, see Subsect. 4.4.1

constraints cnt(Vertices) > 0,

cnt(Vertices) = cnt(toSet(select v.knot from v in Vertices)),

all vert in Vertices (vert.knot # self);

end;

A vertex object class is not used in the specification of VENTIL. It is sufficient to
keep a set of references to neighbour Knots (together with a flag denoting whether
this vertex is in the gas flow or not) to store outgoing vertices9. The three con-
straints on Vertices make sure for each Knot (i) that it is connected to at least
another one (ii) that there are no two vertices to the same Knot and (iii) that there
is no vertex to itself ((i) to (iii) are always fulfilled for an explosion test stand).
Subclasses of Knot add constraints according to their specialised needs: a pump,
for example, must always have one incoming and one outgoing vertex to denote the
pumping direction. Note how easily allowed states of an object can be defined in
Troll. Constraint (ii) also serves as one of many examples in VENTIL where the
expressive power of the select statement is exploited to yield a compact specification.

The constant attribute Type specifies whether a Knot is an endpoint of a gas
flow or the flow just runs through the Knot. The Status attribute stands for the
states the different devices may have. For a valve, open means it is open, opening
that it is no longer closed, but not yet open (due to the mechanical switching delay),
etc.

4.5 Troll Workbench

The Troll workbench is a set of software tools which supports the modelling and
validation of Troll specifications. The architecture and aims of the workbench
was described in [Gra01] among others. When we began with our work, Troll

9Specifying vertices is more complicated with the complete gas flow algorithm (using gas pres-
sure confers to Subsection 4.3.1) because the graph needs to be traversed along incoming vertices
as well. A direction part is added to the vertex data type and an additional constraint is needed
to control the resulting redundancy [Sch96a].
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workbench had not been fully developed, so that it could not be applied to its
full extent in this project. Here, we only want to give a brief description of its
functionalities. The workbench includes the following tools:

• Workbench Management Tool :
This tool is the graphical front-end of the workbench and provides a common
interface to the other Troll tools.

• OMTroll Editor :
This editor provides specifiers with different diagrams for modelling the system
in OMTroll (Community, Object, Communication and Data Type Declara-
tion Diagrams). Figure 4.11 shows the specification of a

part of the CATC system using the OMTroll editor.

Figure 4.11: OMTroll Editor

• Troll Editor :
This is a Troll language mode for the (X)Emacs editors. Some of the new
functionalities added to these editors are searching for specification compo-
nents through the project files, automatic indentation and different colours
and font styles for reserved words.

• Troll Checker :
This tool checks the syntax and static semantics of Troll specifications. It
can be embedded into the textual editor.
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Figure 4.12: Troll Animator

• Troll Documentation Tool
The documentation tool generates HTML code from Troll specifications.
The HTML code can be viewed in any HTML browser and allows users hy-
pertext navigation through the specification and the introduction of informal
comments.

• Troll Animator :
For the animation of the specifications, a database and a C++ library are
generated to hold the object states and implement the model respectively.
In the graphical front end of the animator users can create objects, navigate
through their interfaces and simulate occurrences of events in the system to
validate the specification against the user requirements. Figure 4.12 shows an
animation session.
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Chapter 5

Case Study Elaboration

In this chapter, we discuss the use of our method in the CATC development process,
the experience gained, as well as the metrics applied to both the specification and
the implementation.

5.1 The Development Process

The development process for this project began with an analysis phase for Group
3.4 in the PTB and went through design and implementation for this laboratory. In
addition, we carried out specifications for other laboratories of this group. At that
time, we worked on new features in our specification language, defined guidelines
for our approach and evaluated them.

5.1.1 The Team

When the project began in 1994, the team consisted of 8-12 students and three
full-time employees. All team members had similar backgrounds (computer science,
mathematics) and therefore used the same terminology. One employee settled in
the Federal Board had a computer science background as well as know-how in the
problem domain. The two other employees were settled at the university with special
interests in formal methods and mathematics. None of the students had any Troll
experience and know-how. The students, therefore, were trained in a special Troll
seminar which took place every two weeks. Both employees at the university were
Troll specialists and one of them was the designer of additional Troll concepts
and he spent much time answering specific questions. The students did not only
have to learn to implement tasks, they were also involved in modelling the system.
In the course of several meetings, all team members contributed in developing a
first rough global concept. This complex task was then divided into smaller groups
consisting of 1-2 students.

5.1.2 The Life Cycle Model

As mentioned in Chapter 2, one of the most important factors in a software devel-
opment process is defining the life cycle model. Our experience showed that the
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Figure 5.1: Life Cycle Model

fractal model is the best model to describe our process (see Figure 5.1). The whole
process can be described as follows:

• modelling the Universe of Discourse with OMTroll

• realizing the object classes with Troll

• refining and reusing the resulting products with both Troll and OMTroll.

In the modelling part, a highly iterative, non-sequential process was followed by
all students to widen their expertise in their sub-application domain (see Figure 5.2).
We integrated and improved these steps later on in our method (see Chapter 4,
Section 4.3) These steps are defined as follows:

Declaration of a concurrent system :

One main design decision is when a degree of concurrency is established. In this
step, objects are either aggregated to complex objects or remain concurrent
to other objects.

Description of objects of the system :

Aside from data types, objects systems had to be identified. To begin with,
the structure and the behaviour of a set of objects had to be determined.
Attributes and components were specified, actions were fixed and their effects
on attributes were defined. Constraints on the behaviour of complex objects
were modelled. This also includes the specification of interaction constraints
in aggregated objects.

Specification of global interactions :

Due to the degree of concurrency, global interactions had to be specified. It
was necessary to have a full understanding of all business processes in order
to appropriately model the work flow and the data-flow.
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Figure 5.2: Development Process

Definition of problem-specific data types :

Many interviews with staff members or operators as well as investigation re-
ports and formulas at the PTB had to be understood in detail for the data to
be processed in the information system. This know-how had to be converted
into user-defined data types.

5.2 Experience

5.2.1 Analysis

During the analysis phase, the focus was on providing a structured self-explanatory
presentation of aspects that are relevant to the planned information system. This
representation must be clear and precise, structured to support the management of
the model complexity and independent of concrete implementations [JSHS96].

We specified the Universe of Discourse (UoD) of the problem domain in this
phase rather than the application itself. One major problem in the modelling of
the UoD was the identification of the relevant objects. The OMTroll community
diagram was useful and self-explanatory enough to communicate with the users.
During our first meeting, these diagrams had to be made understandable for the
user. There were two types of users: the first user type had programming knowledge
while the second user type had no such knowledge. The first user group tried to
compare community diagrams with data-flow diagrams which resulted in a number
of misunderstandings. The second user group tried to learn the concepts as well as
possible which had a very positive result. Other diagrams made no sense to the staff
and operators at PTB.

During our meetings, students tried to obtain an insight into specific sub-problem
domains and all team members contributed in developing a first rough global picture.
One advantage of using Troll was to reach a global picture before considering the
details. Changes to the finer grained specification documents did not affect the
global picture.

5.2.2 Design

The specification phase was an iterative process because misunderstandings came
up only gradually. This made the re-specification of all parts necessary: user-defined
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data types, specification of objects and changing the degree of concurrency together
with the global interactions.

The students frequently communicated with us in order to clarify and refine in-
terface definitions. Aside from bilateral discussions, we had regular meetings with
all team members to propagate important design decisions concerning the interfaces.

The global architecture was not changed; it was only refined. The specification
was therefore two-fold: first, we worked with general aspects using mainly diagrams
and second we worked with more fine grain problems using textual notation. This
involved two different aspects: a global view and a detailed view.

5.2.3 Implementation

One advantage of a formal specification is the independence of implementation as-
pects, although the implementation can be partly derived from the specification. As
illustrated in Figure 5.3, the functional requirements which are part of the speci-
fication are translated into the implementation. It should be clear, however, that
the non-functional requirements are not less important than the functional require-
ments. Non-functional requirements have been documented with functional require-
ments in a separate document [Kow94, HS94b]. The document is written in German
and refers to a formal specification document when needed.

The separation of concerns led to a significant complexity reduction. In the early
design phase, it was unnecessary to worry about non-functional requirements and
constraints; the concentration laid on the functionalities of the system. A timing
constraint on an application transaction, for example, at first has nothing to do with
the business function the transition shall implement, i.e. its functional description
can be separated from the timing constraint. The part of the specification which
describes the information which must be stored together with the queries formalised
in Troll can be directly transformed into a database definition construct as usually
done in the logical design step of a database development.

Before starting implementation, non-functional requirements had to be fixed.
This had a major impact on the implementation phase, in regard to indexing the
database, data replication, multi-process architecture with synchronous or asyn-
chronous communication etc.
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A relational database was used in our project. The relational and object ori-
ented models are conceptually very different. Nevertheless, numerous solutions for
mapping object concepts into relational tables have been proposed [Amb99, Kel97,
BW95, RB97, Fus97]. To this end, we developed general transformation rules of
Troll specifications to relational database schemes [Bat96].

Not only structural aspects were modelled. There is much know-how in regard
to how the system can evolve and behave because our approach is object oriented.
This is reflected by translating the system into the target language of the application
which in our case was C++. Information about attributes, actions and their effects
on attributes, inheritance relations etc. were directly translated into the correspond-
ing language constructs in C++. Once again, we developed general transformation
rules. However, not only single Troll concepts are translated; one can also take
advantage of more complex information such as calling chains between several ob-
jects which were implemented using transactions. Thus, the functional requirements
fixed by the formal model carried over into implementation and were enlarged by
non-functional requirements.

5.2.4 Transformation from TROLL to C++

In this section various rules will be introduced which describe a transformation of
a textual specification of TROLL into C++ code. These rules examine mainly the
transformation of two of the most important concepts of TROLL: the data types
and the object classes. For details see [Saa96, Sch96a].

Rules of Transformation of Data Types

Troll Data Types C++ Data Types

nat short
int int
real float or double
string char
union, enum union, enum
union, enum union,enum
record struct
set, list, bag will be replaced by OWL classes

Rules of Transformation of Object Classes

Each object class defined in the TROLL specification will be transformed into a

C++ class. Transformation rules are shown in the following table:
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Troll Object Class C++ Class

Class definition Class definition

Attributes Each attribute corresponds to a data element
in the class definition. This data element
has one of three characteristics: private,
public and protected.

Actions Each update action will be related to a method
of the C++ class. The birth and death actions
will be realised by the constructor and the
destructor of the class.

Aggregation By a indicator to the component class

In our project we distinguished between

• A user of a system as a physical person (see Figure 3.4)

• Data about a user stored in a system (see Figure 3.3).

The former specifies that the user’s view of the system is taken into account,
i. e. the functions a user of the system needs when interacting with it. It gives
information about users along with the operation to change the information specified
as an object class independent from the object class which represents the intended
system. The latter is a component of the intended system (see [DH97]).

This distinction gave us the possibility to specify the user interfaces (dialog
boxes) with Troll. We used the Object Windows Library (OWL) which is a part
of the Borland C++ Class Library, to implement our dialog boxes.

Rules to Translate Troll Specifications within OWL Concepts

Rule 1: TROLL object class → a class derived from Tdialog

Different attributes are realised by an indicator for the OWL class TEdit. The
data type string can simply be realised by this class, the data types nat, int and
real must be realised by an additional control of the allowed input of the OWL class
TFilter validator. This class checks the input while the user is still typing. The next
rule is followed for the transformation of attributes with simple data types.

Rule 2: Attributes with Simple Data Types
Troll string-attributes → TEdit class
Troll nat, real, int-attributes→ TEdit class+ plus TFiltervalidator class

The following shows the rule for the transformation of list valuated attributes
and enumeration attributes by means of Object Windows Library classes:
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Rule 3: Attributes with Complex Data Types
Troll attributes: list attribute → TListBox or TcomboBox
Troll enum attributes → TComboBox or TChekBox or TRadioButton

The list attributes were realised either by the class TListBox or the class Tcom-
boBox, depending on the type of lists of this attribute. If the attribute is a variable
list, where the user may cancel, adapt or search for applications, it will be realised
by the class TBoxList. In the case that list valuated attributes realise a fixed list in
which only one application may be chosen; the class TComboBox for the implemen-
tation of this attribute should be chosen. Attributes with an enumeration type enum
may be realised either by the class TComboBox or TChekBox or TRadioButton.

Actions will be realised by method of classes. For the function of a user action
such as ”cancel”, the allocation of a message by the response table is essential. The
following shows the rule for the translation of TROLL actions into C++ functions.

Rule 4: TROLL actions→methods with entries of the response functions
in the responsible table

The definition of an object class as a combination of several different classes
will be realised by the concept aggregation in the Troll specification language.
Objects are created from this concept complex which possess different components.
The aggregating object classes will be realised in C++ by classes called main classes.
The relating components are declared as data elements within these main classes by
means of an indicator to these classes.

Rule 5: TROLL aggregation → insert of indicators to the individual
components as attributes of the main class

Example:
Figures 5.5 and 5.6 show a component declaration in Troll and its transforma-

tion ino C++ respectively. The class TVgApplicationlist belongs to Basic Adminis-
tration part of CATC (see Chapter 3). Via this dialogues, the staff can search for a
certain application and get the necessary information about this application from the
databases (see Figure 5.4). In order to extend the search, the TVgapplicationsearch
is defined as a component of TVgApplicationlist.

5.2.5 Integration

Because the various CATC subsystems were not developed simultaneously, we began
to integrate them using Troll development environment Tbench[Gra01]. We
had very positive experiences in regard to the integration of various system parts
which were modelled and implemented by different students. There were only a
few problems in integrating the different modules because the students constrained
themselves to the interfaces agreed upon with other team members[Goe97, Him97].

These problems can be mainly divided in two groups:
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Figure 5.4: Application Dialog

object class DlgApplicationlist ... end;

Components ...

dlgsearch: DlgApplicationSearch;

end.

Figure 5.5: Aggregation in TROLL

• Textual specification:

– different declarations of the same attribute (with different types or dif-
ferent features as optional and constant etc.)

– different declarations of the same data type (a data type declared as set
and also as list)

– violation of the Troll restrictions regarding object visibility (the em-
bedded directions for composition and specialisation are often confused.)

– actions called with wrong arguments

• Inconsistencies between graphical and textual specifications.

– changes in the graphical models were not always depicted in the textual

ones and vice versa.
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class DlgApplicationSearch ... end;

class TvgDlgApplicationlist: public TDialog

... end;

private:

TvgDlgApplicationSearch* m_pDlgSearch;

....

(;

class TvgDlgApplicationSearch: public TDialog

(

....

(; ...

dlgsearch: DlgApplicationSearch;

end.

Figure 5.6: Aggregation in C++

5.3 Learned Lessons

The formality and clearly defined semantics of the Troll specifications carried
over to the partly automatically derived implementations. Specification was the
most important part of this project and this is reflected by the amount of time
spent for modelling and implementation, respectively. On average 70% of our time
was spent on specification purposes whereas only 30% of our time was spent on
implementation, including integration.

During analysis and design, we spent more than 30% of our time manually check-
ing syntax and semantic mistakes in our specification. This was not always an easy
task with 17,000 lines of Troll code. Here more tool support was necessary and
re-doing already developed parts over and over again was disappointing. Tool sup-
port turned out to be one key factor to avoid frustration when changing a model
again.

In [KKH+96], we anticipated only a few problems with the implementation be-
cause of minor programming errors. After completing the implementation phase, we
knew that our forecast was correct, although we did not perform any formal checking
or verification of the implementation against the specification. However, we carried
out a careful code review. Codes and specifications were exchanged among the dif-
ferent team members. Everyone had to review the codes of another team member
against the corresponding specifications. In this way, many errors were eliminated
beforehand.

Approximately 400,000 lines of C++ code from about 17,000 lines of Troll
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have been written so far which is a ratio of 1:7. This shows that our input in earlier
project phases was well worth the effort because it is now much easier to read a
Troll specification and understand a problem domain than to read the C++ code.

There have been a number of positive experiences by using the object oriented
formal technique in our project.

• We developed a specification that successfully exploits the features that Troll
provides.

• The object oriented method of Troll helped us to find a modular structure
and well-defined module interfaces.

• Inheritance became an important factor in graph specification in VENTIL be-
cause we were able to separate general node properties (during gas flow cal-
culations) from those of specialised device nodes. The general design and
specification of a Knot is reused in every (future) device object class and no
change in some device classes will influence other Knots (see Chapter 4).

• Constraints that are often found in conjunction with the powerful descriptive
select statement proved to be very helpful. These constraints allow for com-
pact but simple restrictions of the possible behaviour of objects. Due to the
similarities to the transaction concept of databases, the virtues of parallelism
are obvious if a ”usual” information system is designed. However, even in
VENTIL concurrent execution has advantages, e.g. whenever one device is the
target of several duties.

• The compact Troll notation to C++ was surprisingly straightforward. The
overall class structure to algorithmic detail in the gas flow calculations is an
almost one-to-one relationship between specification and implementation on
the design level. On the code level, however, the direct translation of the
specification required to implement many additional classes to support Troll
data types (like sets of Knots etc.) is more difficult.

• The object oriented method makes a distinction between formal and informal
approaches. Informal object oriented approaches for problem analysis are rel-
atively wide-spread by now. In general, these approaches mix informal entity
based concepts for structure presentation with the data flow diagram for pre-
sentation of the system behaviour. An entire description of the structure and
dynamics of the intended system, however, can not be reached.

• The SQL similar query part is used in TROLL to formulate standard queries.

Furthermore, no continuous semantics exist in the above mentioned approaches.
Semantics, however, are necessary requirements for verification of system char-
acteristics. Our long-term goal is not only the specification of information
systems, but to dispose of tools for animation, validation and verification.

• A TROLL specification refers to a goal system on a higher abstraction level
which is independent of the tools used during later implementation. No exact
description of the structure or implementation details are given which can
occur at a later phase, e.g. on the basis of an increased output of the system.
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• Definition of the substantial system functionality and user behaviour makes
sense, especially for large systems. In general, the use of the formal method
demands a high specification in the planning process. However, advantages
such as early recognition of errors and simplified adaptability on altered re-
quirements etc. have been observed. Furthermore, the CATC project showed
that the specification efforts of the user resulted in high additional expendi-
tures. Nonetheless, it delivers precious information that can be integrated into
implementation.

The formality and clearly defined semantics of Troll specifications were trans-
ferred into the implementation phase. In our project, we used a relational database
and C++ as the target language for the application. General rules were laid down
to transform structural aspects of Troll specifications into relational database
schemes and to translate information about attributes, actions and their effects on
attributes, inheritance relations etc. directly into the corresponding language con-
structs in C++. On almost every design level, there was a one-two-one relationship
between specification and implementation.

The advantages of specifying user interfaces and databases with a unified for-
malism are:

• The cooperation of both parts can also be modelled in this formalism so that
any inconsistencies will be discovered at a design phases.

• We receive an implementation independent specification of the functionality
of the user interfaces which may be implemented with the help of tools or
programming languages.

• The result of the specification phase does not get lost, but is integrated into
the implementation phase.

Before the use of Troll, there was no common understanding of many models
and numerous topics had to be discussed repeatedly when new people entered the
project. There was a high personnel fluctuation since the students normally stayed
in the project for only six months. Students that left the team took a lot of know-how
with them and this was the information needed to give the models their semantics.
This was a major reason to restart the project using the formal approach. It was
much less critical with the formal approach when members left the project because
the documentation they left was much less ambiguous.

Because different CATC subsystems were not developed at the same time, we
started to integrate these using tools. Students had the possibility to share diagrams
because tools were used for modelling CATC in other PTB laboratories. This helped
in finding ambiguities by defining interfaces.

5.4 Application of Metrics

A large number of metrics have been suggested [LK94, Tha94] in literature to mea-
sure the quality of development process. A combination of several metrics is essential
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because each individual metric measures only one characteristic. Presently, compa-
nies try to measure the quality of system design first because errors which remain
undiscovered in this early phase can result in high costs later on in the implementa-
tion phase. To apply metrics manually, however, is difficult and costly. Tool support
is necessary for syntax and semantic analysis of programme codes which must be
measured. Another factor are the different quality characteristics. Some of these
characteristics can be described as follows:

• reusability, effort to create reusable components

• extendibility, average productivity for code changing

• Ability to understand.

We decided to apply the following metrics for our project:

• NOA (number of attributes)

• NOM (number of methods)

• LOC (lines of code).

The LOC metric is easily defined and is the most often used metric. This factor,
however, is not consistent from language to language, application to application
and developer to developer. For this reason it is important to determine the steps
precisely.

5.4.1 Troll Specification

To make clear how the above metrics have been applied, this section presents the
metrics for the Valve class from the Troll specification. The metrics for its re-
spective C++ class are presented later. Due to different LOC definitions, we have
decided to count the number of lines of code which can be executed and the number
of data definitions. Methods or attributes which are inherited at one point are not
considered in the results, however, they may be added later on. The method Switch
of the class Valve is an example for the application of LOC and how we counted the
data definitions [Woz98].

Switch( Action, duty)

var // Data Def.

activ : bool, // 1

now : bool // + 1

// ---------

// 2

do // Statements

duty := duty + duty, // 1

AreDutiesFulfilled(Action, activ, now), // 1
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if (activ and not now) then // 1

dutyFulfilled(Action, zp_before) // 1

fi,

if (activ and now) then // 1

if (Action = ac_makeactiv) then // 1

Hardware.On // 1

else

Hardware.OFF // 1

fi,

dutyFulfilled(Action, zp_parallel) // + 1

fi // ---------

od; // 7

// = LOC(Switch)
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The metrics for the class Valve are presented next.

/**

** File: ventil.trl

** Author: Martin Schoenhoff

** Transformation: Maik Oppermann

** Version: 29.1.1998

**/

object class Valve

aspect of MultipleKnot

if Settingup(conf, idRef, duty) and conf.type = kt_valve

components

Hardware : ValveHW hidden;

attributes // Attribut

IsDefect : bool // 1

derived (Hardware.Setup = vs_defect);

// NOA(Ventil) = 1

actions

changing(new:valvesetup) hidden;

behavior

Settingup(conf, idRef, duty) ...

Start ...

Stop ..

Switch(Action, duty) ... // We look at the switch

MakeActive(info) ...

changing(new) ...

Hardware.changing(new) ...

constraints

cnt(Neigbour) = 2,

in = out;

end;

Method LOC Data Definition

Settingup 8 0
Start 2 0
Stop 2 2
Switch 9 0
MakeActive 1 0
Changing 7 0
Hardware.changing 1 0

NOM(Ventil) = 7 LOC(Ventil) = 30 2
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The results for the entire VENTIL specification are as follows.

Classes are ordered in an alphabetical hierarchy. Indentations show inheritance.

Class NOA NOM LOC Data Definitions

Analogue sensor1 1 2 1 0

User1,2

Administrator1,2 0 0 0 0

Tester1,2 0 0 0 0

Digital output1 1 3 2 0

Digital sensor1 1 2 1 0

Gas flowsgraph 7 12 68 16

GasmixerHW1 2 3 4 0

GMG Dialog 5 8 12 1

Hilfe Dialog 0 3 0 0

IG351 0 2 2 0

Knots 16 13 27 15
Activeknot 7 8 29 10

Gasmixer 4 11 40 4
Handvalve 2 4 11 0
MESG 3 5 15 0
Pump 4 5 26 3
Dryer 3 5 24 2
Valve 1 7 30 2

Passiveknots 0 3 2 0
Berstingcontrol 0 1 3 0
Presssensor 1 3 7 0
Coveroutside 0 1 3 0
BoilerExEva 0 1 3 0
Boilershed 1 3 8 0
Pipeend 0 1 3 0
Pipeconnection 0 1 3 0
Oxygenanalyser 0 1 3 0
Storage 0 1 3 0

MESGHW1 2 3 21 0

MESG Dialog 2 5 3 0

Measurement1,2 0 2 0 0

Testlab 0 2 4 0

PsAdmin 0 3 0 0

ValveHW1 2 4 3 0

Valvecontrol 2 18 66 1

ValveSystem 0 8 8 1

Vtservice 1 10 12 1
∑

68 164 447 56

1 only class specification exists, no C++ implementation
2 As the classes are in different parts of the system, they were not taken into consideration.
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5.4.2 C++ Implementation

As in the TROLL specification, the statements to be executed are counted without
considering the complexity of the relevant statements in LOC. It would be desirable
to have compiler support which can determine statements more precisely during
syntax analysis and code generation. Due to different LOC definitions, we decided
to count the LOC in addition to the number of data definitions applied. Special
emphasis are placed on declarations following a constructor call because they are
data definitions as well as executing statements.

The results of C++ implementation for the entire project will be presented in the
appendix. Here, only a short example is given. For every class we consider declared
attributes as well as methods. Inherited methods were not considered. However,
they can be added on later.

Some classes of the project are inherited by the library class. The library class
is not part of this project and for this reason, the measurement results for this class
are missing.

C++ implementation consists of many classes in which the user interfaces are
implemented (see examples of TvtVentilFrame). The number of classes in C++
is larger than in TROLL because some classes do not exist in TROLL, although
they exist in C++. Moreover, TROLL data structures are translated by additional
classes in C++.

Using the Switch method and the class CvtValve (Valve.cpp, Valve.hpp) as an
example, we illustrate the application of the NOA, NOM and LOC metrics.

void CvtValve::Switch (const CvtAction Action,

const CvtDutyMounte& pmduty)

{ // Statements Data Def.

CvtDuty pflNotNow // 1

= AredutyFullFilled // 1

(Action, Cvttimeperiod::TP_Now);

if (pflNotNow.GivetargetKnots() == NULL) // 1

{

m_pmduty += pmduty; // 1

CvtDuty pflNotbefore // 1

= Aredutyfullfilled // 1

(Action, Cvttimeperiod::TP_Before);

if (pflNotbefore.GivetragetKnots() == NULL) // 1

{

ostrstream strInfo; // 1

strInfo << ... // 1

Information(strInfo.str()); // 1

if (Action == CvtAction(CvtAction::AC_Activate)) // 1

m_pvthwHardware->On(); // 1

else

m_pvthwHardware->Off(); // 1

dutyfullfilled (Action,
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CvtTimePeriod::ZP_Parallel); // 1

}

else

{

ostrstream strInfo; // 1

strInfo << ... // 1

Information (strInfo.str()); // 1

dutyFullfilled (Action,

CvtTimeperiod::TP_Before); // 1

}

}

else

{

ostrstream strInfo; // + 1

strInfo << ... // 1

Information (strInfo.str()); // + 1

} // --- ---

// 16 5

}

//-------------------------------------------------------------//

// V E N T I L . HPP //

// Project : Valve Controllimg //

// Notice : Valve ACtivknots in Gas flowgraph. //

// Autho : Martin Schoenhoff //

// Date : 24.10.95 //

//-------------------------------------------------------------//

class CvtValve : public CvtACtivKnoten

{

// Membervariablen

private: // simple Attribute

ChwValve* m_pvthwHardware; // 1

// Memberfunction

public:

CvtValve (TvtGraphic* wGraphic,

CvtShortform& kzshort, istream& isConfig);

~CvtValve();

virtual void DetermineConnection (void);

virtual BOOL AcceptDuty (const CvtDuty& Duty);

virtual void FinishDrawing (TDC &dc) const;

virtual BOOL IsDefect (void) const;

virtual void Start (void);

virtual void Stop (void);

virtual void Switch (const CvtAction Action,

const CvtDutyAmount& pmduty

= CvtDutyAmount());

virtual void StopSwitch (CvtAction Action);

virtual BOOL MakeActive (void);

void Changing (void);
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};

Method LOC Data Definition
Constr. Simple.

CvtValve 11 0 0
CvtValve 1 0 0
DetermineConnection 8 0 0
AcceptDutyn 2 0 0
FinishDrawing 32 0 2
IsDefect 1 0 0
Start 4 0 0
Stop 3 0 0
Switch 16 0 5
StopSwitch 1 0 0
Makeactive 2 0 0
Changing 22 0 2

NOM(Valve) = 12 LOC(Valve) = 102 0 9

The next table compares the results of the VENTIL specification and implementation.

Project Attribute NOM LOC Data Definitions
Ventil Obj.Valued Simple Constr. simple
∑

TROLL - 68 164 447 - 56∑
C++ 74 85 552 2709 95 276
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Chapter 6

Summary and Further Work

6.1 Summary

This thesis has presented an approach and an evaluation of the object oriented specifi-
cation language Troll in PTB. Our cooperation with the PTB (Physikalisch-Technische
Bundesanstalt - the German Federal Institute of Weights and Measures) began in 1994
[Kow94, HS94b] with the department responsible for explosion protection of electrical
equipment working on a CATC project and ended in 2000. This department tests elec-
trical equipment according to European standards for usability in explosive environments
and issuing certificates for approved components. Only certified equipment can be used in
hazardous environments like level meters in fuel tanks. The certification process consists
of several steps:

• The applicant applies for certification of a certain component by the PTB

• The data of the application must be verified

• Technical specifications of the component have to conform to the relevant European
standards

• If the application is correct, the specimen has to be checked whether it meets the
specification or not

• If it does, the required tests have to be performed and documented. The certificate
and other documentation is then issued

• If they do not, the reason for failure should be provided and the entire process must
be repeated .

With an increasing number of applications (about 1000 certificates are issued per year),the
requirement for computerised aid for the certification process came up. The main target
of the CATC project was to develop an information system which supports the staff and
operators in the department responsible for explosion protection of electrical equipment
during different steps of the certification process. The system has to facilitate administra-
tive tasks as well as experimental tests and design approval. The Computer Aided Testing
and Certification System (CATC) therefore comprises modules such as :

• ADMIN which registers and administrates applications[Saa96, Bat96]

• Ex-Pert which determines and assigns experimental tests compulsory for a certain
type of equipment as well as information retrieval on European standards used in
design approval [Ben96, Jür96]
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Figure 6.1: Explast via Internet

• Ex-Plast which retrieves information on synthetic material used in explosion proof
equipment required in design approval [Sch96b]

• PRESSTEST which controls test equipment as well as automatic collection and
storage of measuring values [Sha96, Hoh96]

• VENTIL which is used as a remote control of valves in experimental tests [Sch96a].

The activities realised by the project are often called business processes. The organ-
isation complexity of the project as well as the system that was used to support this
organisation was rather high. When the project started at the beginning of 1994, no for-
mal object oriented methods were applied [Moh94, Arn95]. At the end of the year, it was
clear that chances of success with the chosen approach were rather low. At that time,
we decided to use Troll from analysis to implementation. After a year, the following
experiences were made:

• Our language was not suited for all aspects of our problem domain, for example in
the area of real-time

• Troll helped us to find module structures and well-defined module interfaces

• The transition from the compact Troll notation to C++ was straight-forward

• The question of guidelines became increasingly more important

• Tool support became crucial for the success of big projects.

Aside from its primary goal, the project serves as a field study for validating and
developing the Troll language and method for modelling and specifying information
systems [DH97, GK97, Har97, HDK+97, GKK+98].

The project started in 1994 with an analysis and specification of a system for ad-
ministration support. Full-time employees of the PTB split the work into separate tasks,
supervised the design and implementation and integrated the results. Students graduating
at this institute solved these tasks. This frequently included modelling the different parts
of the systems under consideration with Troll. This included database design and user
interfaces as well as hardware and Internet/intranet access. The most recent develop-
ments (January 2000) were to allow Internet/intranet access to certain systems (Ex-Zert,
Ex-Plast) see Figure 6.1 and adjusting the PRESSTEST subsystem to new hardware,
porting it to a new operating system and making minor adaptations to its functionality.
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We only concentrated on the guidelines of Troll in this thesis. The development of
Troll tools is done by [Gra01]. The workbench was used by students doing their master’s
theses in cooperation projects with the PTB. Several positive experiences have already
been reported in [KG98, Kan99, Win00, Sch00].

The research in this thesis was motivated by the observation that although formal
approaches to software modelling provide more precise specifications, there is a need for
techniques to support methodology. Guidelines support developers during the design
process and to some extent to determine possible steps. These steps can then be used for
the development of the system. This is why we defined such guidelines for our specification
language Troll. This can be demonstrated in the following steps:

Specifying a new System

• Defining the nodes of the system

1. Hardware node

2. Application node

3. Domain node

• Describing the static structure of each node of the system

1. Finding objects and classes

2. Defining data types

• Defining global interactions between objects in different nodes as well as locally in
the same node

1. Declaration of attributes

2. Definition of necessary actions

3. Definition of birth and death actions

• Expressing the behaviour of the objects (the first time only graphically)

1. Describing the hardware elements (trivial)

2. Defining the business process (complex)

• Refining object declarations

• Validating the specification.

We finished the modelling and implementation of the CATC system for one of three
laboratories of the group responsible for explosion protection of electrical equipment and
reused this model for other laboratories at the PTB. Without tool support, re-specification
of the work and redoing of already developed parts was generally difficult and disappoint-
ing. Tool support was one key factor to avoid frustration when changing models. During
analysis and design, we spent more than 30% of our time checking syntax and semantics
mistakes manually in our specification. This was not an easy task with more than 17,000
lines of code.

The main part of this thesis describes the advantages and the disadvantages of using
Troll in various software engineering phases and different problem domains.
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6.2 Future Work

The project will move from a purely national one to an international one.
The information system CATC has established itself within the PTB. Due to the

positive experiences made with CATC, others departments have asked whether the system
can be adapted to other situations. In the context of an international co-operation between
the PTB and INSEMEX (Romania) (”(INSEMEX SECEEx Petrosani) National Institute
of Mining Safety and Explosion Protection, Romania” ), a modified and simplified English
version of this information system has been introduced. Other requirements have already
been made to the PTB. PTB are still working on an internationalisation of CATC.

The further development of CATC will find its application within the internet. The
future task will be to establish an online expansion as an international and comprehensive
gateway for explosion protection and safety.

The first step will be an online version of Administrationspart (ADMIN). Here, users
can follow and carry out their tasks on a parallel basis. Co-operation between various
partners will be intensified. This will make a faster and better execution possible.

A gateway for explosion protection could then include the following:

• A ”Who is Who” register in which the different participants (testers, producers,
operators and authorities) can introduce and describe themselves

• A training system with a calendar of events

• Discussion forums

• An extension of the existing offers (Ex-ZERT, Ex-PLAST, ADMIN)

• Search mechanisms for the information system

• Internationalisation of the system

• Different access rights for users.

The security plays a very important roll in such a system. An exact security analysis
must be carried out. The modelling and implementation of safety in distributed systems
must be precisely and accurately examined.

All of this will give us the opportunity to become more experienced in regard to reuse
issues. Since most business processes and rules are formalised, we believe that we can
easily adapt our models to this new dimension of the problem domain. This potential
future may prove the strategic advantage of our choice of a formal approach. We had
long-term discussions about the overall model and this lead to a good understanding of
the general setting of the PTB world.

Troll has also been used in other cooperation projects within PTB. After a year of
successful work in the department responsible for explosion proof electrical equipment,
we were asked by the department responsible for electricity whether we could work with
them as well. This department concentrates on research and development in the field of
electrical precision measuring techniques, especially with the representation, reproduction
and dissemination of electric units in the area of semiconductor devices within the De-
partment of Quantum Electronics. This department focuses on the possibilities offered by
semiconductors, with the Quantum Hall Effect for example. The unit of resistance can be
reproduced with a formerly unattainable precision and single electron tunnelling might be
used likewise for current intensity. Measurements performed on pieces of semiconductor
wafers, like photoluminescence excitation spectroscopy or single electron tunnelling mea-
suring, produce a lot of data. The information system MDB2 (Measuring Data Database
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of Division 2) was therefore designed and implemented to store this data and to provide
access to it via a graphical user interface. Troll was used for the design of both the
database and the user interface. The first step in the development of the information
system MDB2 was to design a database which should store data on specimens, chips and
on the semiconductor wafers they were made from as well as on the experiments or mea-
surements performed on them and the data obtained thereby [Wol98]. The next step was
to complete the user interface

Another application of TROLL was to model the equipment used for the measuring
and the set-up of these devices in different types of experiments aiming at the implemen-
tation of an information system that will facilitate work at different measuring places and
provide computerised control over the measuring devices[Ara98]. While the MDB2 was
designed to store data obtained by different types of measurements like single electron tun-
nelling or photoluminescence and photoluminescence excitation spectroscopy measuring,
a second system was developed to retain information on the available equipment and the
set-up of devices for the different measuring experiments as well as their executions. The
first step here was to analyse the structures and proceedings of the different measurements
and to extract the features which they have in common and which distinguish them - with
a focus on control, input and output parameters and the sequence of actions performed.
The result of this analysis was modelled using Troll˙
This specification could then be used as a guideline for developing homogenous modules
for the different stages of experiments which in turn provide the basis for implementing
programmes to facilitate the measurements (by means of computer-based control over
measuring devices and data processing). As a second step, the specification was evalu-
ated with the implementation of a system supporting the photoluminescence spectroscopy
measurements.
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Appendix A

Syntax

This appendix contains all OMTroll diagrams and the entire Troll syntax.

A.1 OMTroll

community diagram

<ident>
object class:

<ident>

<ident>

<ident>

<ident>

<ident>

<ident>

<ident>

static specialization (isA-relation):single component:

<ident>(<para>)

multiple component:

<ident> <ident>

<ident> <ident>(<para>)

single object: multiple objects:
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data type diagram

list/set/bag:

map:

enumeration:

record:

<predefinedType>|<usrDefinedType>

<predefinedType>|<usrDefinedType>

<predefinedType>|<usrDefinedType>

...

<ident>

<ident>

<ident>

<ident>

<ident>

<ident>

...

<ident>

<predefinedType>|<usrDefinedType>

<predefinedType>|<usrDefinedType>

<predefinedType>|<usrDefinedType>

[<ident>]

<ident>

list|set|bag

<ident>

<ident>

record
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object class declaration diagram

<ident>

<ident> <ident>

<ident>

<attr_decl>
<attr_decl>

......

<action_decl>
<action_decl>

...

...

OR

<ident>

<attr_decl>
<attr_decl>

\c  \i \h \o \d

<ident>

...

... ...

<ident>

object behavior diagram

<ident>

transition: <variables>

final state: state:

[<cond>]<act_term>

<ident>

<ident>

initial state:
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communication diagram

<act_Term>

<ident>

<act_Term>

<ident>

<variables>

[<cond>]

[<data_term>]

[<data_term>] [<data_term>]

A.2 Troll

reserved words

data type var object class end attributes actions
components behavior aspect of false hidden
derived constant optional initialized once onlyIf
do od if then else fi
forEach constraints initially objects object system

predefined names

nat int real string bool char money date list
set bag record map in or and xor implies
not div mod toSet toList toBag cnt tail head
dom range def select from where all any enum

meta rules

<x list> ::= <x> | <x> , <x list>

<x seq> ::= <x> | <x> ; <x seq>

identifier

<ident> ::= <character> | <character><ident>
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<character> ::= A | ... | Z | a | ... | z | 0 | 1 | ... | 9 |

data types

<type> ::= <ident> | ||<ident> || | enum(<ident list> ) |
set(<type> ) | list(<type> ) | bag(<type> ) |
record(<field list> ) | map(<field> , <type> ) |
nat | int | real | bool | string | date | money | char

<dataTypeSpec> ::= data type <ident> = <type>

<field> ::= <variable> | <type>

variables

<variableDecl> ::= var <variable list>

<variable> ::= <ident> : <type>

terms

data terms

<constTerm> ::= <ident> | <natConst> | <intConst> | <realConst> |
<stringConst> | <charConst> | <boolConst> |
<dateConst> | <moneyConst> | empty

<mapLet> ::= (<dataTerm> ,<dataTerm> )

<constructor> ::= mk-<type> ([<dataTerm list>] ) | mk-<type> ([<mapLet list>] )

<relation> ::= < | > | <= | >= | = | # | in

<boolOp> ::= or | and | implies | xor

<infixOp> ::= + | - | * | / | div | mod | .@ | .. | isA | <boolOp> |
<relation>

<prefixOp> ::= - | head | tail | cnt | toSet | rng | dom | def | num

<condTerm> ::= <pFormula> ? <dataTerm> : <dataTerm>

<selectTerm> ::= select <dataTerm> from <rangeDecl> [ where <pFormula>]

<dataTerm> ::= <ident> | <qualidentTerm> | <constTerm> |
(<dataTerm> ) | <prefixOp> (<dataTerm list> ) |

<constructor> | <dataTerm> <infixOp> <dataTerm>|
<condTerm> | <selectTerm> | <dataTerm> (<dataTerm> ) |
<dataTerm> .<dataTerm>
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qualified identifier terms

<qualidentTerm> ::= <ident> | <componentTerm> .<ident>

component terms

<componentTerm> ::= <ident>[ (<dataTerm> )] |
<ident>[ (<dataTerm> )].<componentTerm>

action terms

<actionTerm> ::= <ident>[ (<dataTerm list> )] |
<componentTerm> .<ident>[ (<dataTerm list> )]

range declaration

<rangeDecl> ::= <ident> in <dataTerm> |
<ident> in <dataTerm>, <rangeDecl>

propositions

<pFormula> ::= not <pFormula> | <pFormula> <boolOp> <pFormula> |
<dataTerm> | all<rangeDecl> (<pFormula> ) |

(<pFormula> ) | any<rangeDecl> (<pFormula> )

object classes

<objectClassSpec> ::= object class <ident>
[<specialization>]
[ components<componentDecl seq> ;]
[<signatureDecl>]
[ behavior <behaviorDef>]

end

<specialization> ::= aspect of <ident> if <specCondition list>

<specCondition> ::= <actionTerm> [ and <pFormula>]

signature declaration

<signatureDecl> ::= [ attributes<attributeDecl seq> ;]
[ actions<actionDecl seq> ;]

<attributeDecl> ::= <variable> [<attributeDesc list>]

<attributeDesc> ::= hidden | constant | optional |
derived <dataTerm> | initialized <constTerm>
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<componentDecl> ::= <ident>[ (<field> )] :<ident> [ once] [ hidden]

<actionDecl> ::= [ *| +] <actionSignature> [ hidden]

<actionSignature> ::= <ident> [ (<parameter list> )]

<parameter> ::= [ !]<field>

behavior definition

<behaviorDef> ::= [<operationDef seq> ;]
[<constraintDef> ;]

<operationDef> ::= <actionTerm>
[ onlyIf<pFormula>]
[<variableDecl>]
[ do <actionRule> od]

<actionRule> ::= <actionRule list> | <basicRule> |
<repetitiveRule> | <conditionalRule>

<conditionalRule> ::= if <pFormula> then <actionRule> [ else <actionRule>] fi

<repetitiveRule> ::= forEach<rangeDecl> do <actionRule> od

<basicRule> ::= <valuation> | <actionCall>

<valuation> ::= <ident> := <dataTerm>

<actionCall> ::= <actionTerm>

<constraintDef> ::= constraints <constraintRule list>

<constraintRule> ::= <pFormula> | initially <pFormula>

system specification

<systemSpec> ::= object system <ident>
<specItem seq>

end.

<specItem> ::= <dataTypeSpec> | <objectClassSpec> |
<instanceDecl> | <behaviorSpec>

<instanceDecl> ::= objects <ident>[ (<field> )] :<ident> [ once]

<behaviorSpec> ::= behavior <operationDef seq> end
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Appendix B

Troll Example

This appendix contains the Troll specification of the CATC example introduced in Chap-
ter 4.

/* Data type definitions */
data type labours = enum(l3_41, l3_42, l3_43);

data type msset = record(press:real, time:real);

data type msresults = list(real);

data type address_type = record(street:string,nr:nat,city:string);

data type users_type = enum(admin, staff, operator);

/* Object class Group */
object class Group

components

Applications(appNr:nat) : Application;

Companies(compId:nat) : Company;

actions

*create;

+delete;

end;

/* Object class Application */
object class Application

components

Experiments(expNr:nat) : Experiment;

attributes

company : |Company| constant;

labour : labours;

max_pressure : real constant;

nextExpNr : nat initialized 1, hidden;

actions

*createAppl(comp:|Company|,max_press:real,lab:labours);

newExperiment(nam:string,st:msset,!expNr:nat);

+deleteAppl;

behavior

createAppl(comp,max_press,lab)

do
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company := comp,

max_pressure := max_press,

labour := lab

od;

newExperiment(nam,st,expNr)

onlyIf(st.press <= max_pressure)

do

Experiments(nextExpNr).createExp(nam,st),

expNr := nextExpNr,

nextExpNr := nextExpNr+1

od;

constraints

nextExpNr <= 11;

end;

/* Object class Experiment */
object class Experiment

attributes

name : string constant;

setup : msset constant;

results : msresults initialized empty;

assessments : list(string) initialized empty;

actions

*createExp(nam:string,st:msset);

giveSetup(!st:msset);

storeResults(res:msresults);

giveResults(!res:msresults);

storeAssessments(assmt:list(string));

deleteExp;

behavior

createExp(nam,st)

do

name := nam,

setup := st

od;

giveSetup(st)

do

st := setup

od;

storeResults(res)

do

results := res

od;

giveResults(res)

do

res := results

od;

storeAssessments(assmt)

do

assessments := assmt
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od;

end;

/* Object class Company */
object class Company

attributes

name : string;

address : address_type;

phone : string;

actions

*create(nam:string,addr:address_type,phon:string);

+delete;

behavior

create(nam,addr,phon)

do

name := nam,

address := addr,

phone := phon

od;

end;

/* Object class User */
object class User

attributes

shortName : string constant;

login_date : date constant;

actions

*login(n:string,d:date,user_t:users_type);

+logout;

behavior

login(n,d,user_t)

do

shortName := n,

login_date := d

od;

end;

/* Object class Staff */
object class Staff

aspect of User if login(n,d,t) and t = staff

actions

createExperiment(appNr:nat,nam:string,st:msset,!expNr:nat);

askResults(appNr:nat,expNr:nat,!res:msresults);

checkResults(appNr:nat,expNr:nat,res:msresults);

giveAssessment(appNr:nat,expNr:int,assmt:list(string));

end;

/* Object class Operator */
object class Operator

aspect of User if login(n,d,t) and t = operator
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actions

askSetup(appNr:nat,expNr:nat,!st:msset);

startExperiment(appNr:nat,expNr:nat,st:msset);

giveResults(appNr:nat,expNr:int,res:msresults);

end;

/* Object declarations */
objects IG34:Group;

objects Users(userId:nat):User;

/* Global behavior specification */
behavior

Staff(Users(userId)).createExperiment(appNr,nam,st,expNr)

do

IG34.Applications(appNr).newExperiment(nam,st,expNr)

od;

Staff(Users(userId)).askResults(appNr,expNr,res)

do

IG34.Applications(appNr).Experiments(expNr).giveResults(res)

od;

Staff(Users(userId)).giveAssessment(appNr,expNr,assmt)

do

IG34.Applications(appNr).Experiments(expNr) \
.storeAssessments(assmt)

od;

Operator(Users(userId)).askSetup(appNr,expNr,st)

do

IG34.Applications(appNr).Experiments(expNr).giveSetup(st)

od;

Operator(Users(userId)).giveResults(appNr,expNr,res)

do

IG34.Applications(appNr).Experiments(expNr).storeResults(res)

od;

end;
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Figure C.1: OWL-Classes

Appendix C

Object Windows Library

This appendix give an overview about Object Windows Library.

TWindow Classes

Application Class: TApplication
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The class TApplication builds on the basic class of Windows programming and rep-
resents a complete Windows application. However, this class is never directly used; a
derived class is defined which is supplied by the required functionalities.

Window Class: TWindow

Among the class Tapplication, the class TWindow builds on the second central class for
Windows programming. This class is compatible with the different switches and dialogue
boxes used in Windows and also builds the basic class for all Window types.

Dialog Class: TDialog

The class TDialog derived from TWindow enables the creation, the realisation

and the removal of dialogue. Such dialogue windows are mainly used for making
dialogue input by the user possible.

Control Element Classes

The quantity of window control elements is comprised mainly of input fields and control
boxes. This quantity comes from the basic class TControl. Various different classes are
derived from this class which defines different control elements. The following list gives
an insight into all used control elements of the implementation of the information system
”Operation”

Tbutton

This class represents a control box which resolves an action of the corresponding dia-
logue.

TcheckBox

This class was defined for the use of marking fields checkboxes.

TRadioButton

This class makes the administration of RadioButton possible which enable a

”l or n” choice of different data.

TGroupBox

By framing groups, several control elements may be combined to one or several groups
within the dialogues.

TStatic

This class is used for output fields for labelling various control elements.

TEdit

This class is used for the use of input fields.

TListBox

This class makes the administration of list of elements possible.

TComboBox

This class is for presenting combination fields which are an extension of listing fields.
They combine a static textual element or an edit field with a list box.

Class Communication

The user interfaces developed in this thesis is a compilation of several classes which
derive from the OWL class.
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The self-defined classes must communicate with each other to make an interactive op-
eration of this programme possible. Communication is carried out by exchanging messages
and information between the different classes.

This exchange is realised by the so-called response tables of ObjectWindows. Response
tables build detailed messages to corresponding response functions. The declaration of
response tables occurs in the relevant class declaration by means of the following macro:

DECLARERESPONSETABLE
The definition of the response table is initiated by the following macro:
DEFINERESPONSETABLE
The value of ”X” depends on the quantity of the direct basic classes of the relating

class of the response table. The definition of the response table is ended by the macro:
ENDRESPONSETABLE
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Appendix D

C++ Classes of Remote of Valve

This appendix give results of the C++ Implementaion of Valve.
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Class Attribute NOM LOC Datendefinition
obj.valued simple Constr. simple.

CvtAktion 0 1 5 14 0 0

CvtAnschluss 3 3 17 57 0 6

CvtAnschlussPosition 0 1 5 5 0 0

CvtGasflussschema 1 1 9 21 0 2

CvtKnoten 9 4 51 207 12 43
CvtActivKnots 2 2 16 84 6 11

CvtGMG 1 3 10 120 5 15
CvtHandValve 0 1 9 39 0 3
CvtMESG 1 2 7 37 1 1
CvtPumpe 0 3 13 91 3 6
CvtDryer 0 2 12 60 0 6
CvtValve 0 1 12 102 0 9

CvtPassivKnots 0 0 11 9 0 0
CvtBerstsingcontrol 0 0 3 44 0 8
CvtPresssensor 0 1 4 33 0 2
CvtCoverOutside 0 0 4 72 4 11
CvtBoilerExEva 0 0 4 57 4 9
CvtBoilerHalle 0 1 6 70 6 9
CvtPipeEnd 1 0 4 68 0 3
CvtPipeConnection 0 0 3 38 0 3
CvtOxigenanalyse 0 0 3 2 0 1
CvtStorage 0 0 3 42 3 8

CvtKnotsReferenz 0 2 8 12 0 0

CvtShortform 0 1 5 24 0 0

CvtDirektion 0 1 3 3 0 0

CvtPfeil 2 0 4 23 3 4

Cvtduty 3 3 11 30 0 1
CvttimeDuty 1 0 5 8 0 0

CvtDirektion 0 1 4 6 0 0

CvtKeyWord 1 0 10 104 0 2

Cvtfile 2 0 4 15 1 2

Cvttime 0 1 4 4 0 0

CXvtExeption 0 1 3 15 0 0
CXvtNoACtion 1 0 2 3 0 0
CXvtNoConnectionPosition 0 1 2 3 0 0
CXvtNoDireCtion 0 1 2 3 0 0
CXvtGasNotcomplete 0 0 2 2 0 0
CXvtFileNotfind 1 0 2 3 0 0
CXvtToomuchText 1 0 2 3 0 0
CXvtShortformMuliple 1 0 2 3 0 0
CXvtKnotsNotCalculate 2 0 2 4 0 0
CXvtConnectionCovered 4 0 2 6 0 0
CXvtConnectionNotDefined 2 0 2 4 0 0
CXvtKnotsNotExist 1 0 2 3 0 0
CXvtPipeTwoKnots 0 0 2 2 0 0
CXvtPipeWithoutGasflow 0 0 2 2 0 0
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Class Attribute NOM LOC Data definition
obj.valued simple Constr. simple

CXvtPipeSlop 0 0 2 2 0 0
CXvtPipeNotCalculated 1 0 2 3 0 0
CXvtPipeFromToNotCalculated 5 0 2 7 0 0
CXvtTextNotCalculated 1 0 2 3 0 0
CXvtPfeilNotCalculated 1 0 2 3 0 0
CXvtDelayTooLang 0 2 2 4 0 0
CXvtNoRestor 1 0 2 3 0 0
CXvtDontfillduty 1 0 2 3 0 0
CXvtdutyNotCalculated 1 0 2 3 0 0
CXvtdutyForNotCalculated 2 0 2 4 0 0
CXvtNoWindow 0 0 2 2 0 0
CXvtConnectionMultiple 1 0 2 2 0 0
CXvtNotallowedAPos 2 0 2 4 0 0
CXvtNoACtivShortform 1 0 2 3 0 0
CXvtNoPassiveShortform 1 0 2 3 0 0
CXvtNoStartbar 1 0 2 3 0 0
CXvtHereNoDirection 1 0 2 2 0 0
CXvtNoOffOnClose 1 0 2 3 0 0
CXvtNoOnOffPressure 1 0 2 3 0 0
CXvtPipeverbDirektion 0 0 2 2 0 0
CXvtGMGwithoutAir 0 0 2 2 0 0
CXvtNo Shortform 1 0 3 8 0 0
CXvtShortformAnfangAktiv 0 1 2 3 0 0
CXvtShortformMitS 0 2 2 5 0 0
CXvtNoPfeil 0 0 2 2 0 0
CXvtNoPosition 0 0 2 2 0 0
CXvtNoKeyword 1 0 2 2 0 0
CXvtNoTimepoint 1 0 2 3 0 0

SvtGasInfo1 0 3 3 9 0 0

SvtGMGInfo1 0 4 1 5 0 0

TApplication2

TvtVentilApp 0 2 2 14 0 1

TArrayAsVector2

CvtConnectionListe 0 0 1 1 0 0

TArrayAsVectorIterator2

CvtConnectionListeIter 0 0 1 1 0 0

TBinarySearchTreeImp2

CvtKnotsListe 0 0 1 1 0 0

TBinarySearchTreeIteratorImp2

CvtKnotsListeIter 0 0 1 1 0 0

TDecoratedFrame2

TvtVentilFrame 4 8 33 253 4 17

TDialog2

TvtDialog 0 0 2 17 0 0
TvtDlgGMG 0 14 14 120 4 18
TvtDlgMESG 0 2 5 21 0 4

TIListImp2

CvtThreadListe 0 0 5 19 2 2
CvtGfThreadListe 0 0 1 1 0 0
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Class Attribute NOM LOC Data definition
obj.valued simple Constr. simple

TIListIteratorImp2

CvtThreadListeIter 0 0 1 1 0 0
CvtGfThreadListeIter 0 0 1 1 0 0

TISetAsVector2

CvtKnotsAmounts 0 0 7 36 8 0

TISetAsVectorIterator2

CvtKnotsAmountsIter 0 0 1 1 0 0

TPoint2

TvtPosition 0 0 4 4 0 0

TPXPictureValidator2

TvtSpaltValidator 0 0 2 2 0 0

TRadioButton2

TvtRadioButton 0 0 2 11 0 1

TSet2

CvtKnotsAmountsAmounts 0 0 4 18 4 0

TSetAsVector2

CvtPfeilAmounts 0 0 1 1 0 0
Cvtduty Amounts 0 0 3 9 2 0
CvtTextAmounts 0 0 1 1 0 0
CvtZeitduty Amounts 0 0 1 1 0 0

TSetAsVectorIterator2

CvtPfeilAmountsIter 0 0 1 1 0 0
Cvtduty AmountsIter 0 0 1 1 0 0
CvtTextAmountsIter 0 0 1 1 0 0
Cvttimeduty AmountsIter 0 0 1 1 0 0

TSetIterator2

CvtKnotsAmountsAmountsIter 0 0 1 1 0 0

TSlider2

TvtSlider 0 0 3 13 0 0

TStatusBar2

TvtStatBar 0 2 15 61 1 3

TThread2

CvtGasflowThread 0 1 5 13 0 1

TWindow2

TvtGraphic 5 6 34 262 15 51

1 Structur
2 Classes from Class Library

Following Functions belong to the Project, are defined in other classes.

Funktion LOC Data definition
Constr. simple

istream& operator>> (istream&, CvtConnectionPosition&) 8 0 1
ostream& operator<< (ostream&, CvtConnectionPosition&) 1 0 0
istream& operator>> (istream&, CvtDirection&) 8 0 1
ostream& operator<< (ostream&, CvtDirection&) 1 0 0
ostream& operator<< (ostream&, CXvtExeption&) 2 0 0



111

Funktion LOC Data definition
Constr. simple

static void Change (void *) (in Drucksen.cpp) 1 0 0
static void Change (void *) (in Gmg.cpp) 1 0 0
istream& operator>> (istream&, 9 0 1

CvtGasflowschema::CvtShortformAmounts&)
ostream& operator<< (ostream&, 5 0 0

CvtGasflowschema::CvtShortformAmounts&)
istream& operator>> (istream&, CvtGasflowschema&) 10 0 0
ostream& operator<< (ostream&, CvtGasflowschema&) 5 0 0
static void syscall Execute (void *) 1 0 0
static void Change (void *) (in Mesg.cpp) 1 0 0
static const char* SpaltInString (MESG SPALT) 2 1 1
static MESG SPALT StringInSpalt (const char *) 1 0 0
istream& operator>> (istream&, SvtGasInfo&) 7 0 2
static void Change (void *) (in Handvent.cpp) 1 0 0
static void Change (void *) (in Kesselhl.cpp) 1 0 0
CvtKnotsAmounts operator+ (const CvtKnotsAmounts&, 7 2 1

CvtKnotsAmounts&)
ostream& operator<< (ostream&, const CvtKnotsAmounts&) 7 0 0
CvtKnotsAmountsAmounts operator/ 8 1 0

(const CvtKnotsAmountsAmounts&, CvtKnotsAmountsAmounts&)
ostream& operator<< (ostream&, 8 2 1

const CvtKnotsAmountsAmounts&)
istream& operator>> (istream&, CvtShortform&) 11 0 1
ostream& operator<< (ostream&, CvtShortform&) 5 0 0
istream& operator>> (istream&, CvtPfeil&) 4 0 1
istream& operator>> (istream&, TvtPosition&) 14 0 2
ostream& operator<< (ostream&, TvtPosition&) 1 0 0
static void ChangeEnergie (void *) 1 0 0
static void ChangeVentile (void *) 1 0 0
istream& operator>> (istream&, CvtKeyWord&) 5 0 0
ostream& operator<< (ostream&, CvtKeyword&) 1 0 0
istream& operator>> (istream&, CvtTexte&) 3 0 0
ostream& operator<< (ostream&, CvtTexte&) 1 0 0
ostream& operator<< (ostream&, CvtTexteAmounts&) 8 1 0
int OwlMain (int, char* []) 16 0 0
static void Change (void *) 1 0 0
istream& operator>> (istream&, CvtTimepoint&) 8 0 1




