Index

<u>Index terms</u>	<u>I</u>	<u> Links</u>	
A			
accelerating rate calorimeter (ARC)	183		
accidental explosions			
aluminum dust explosion, Gullhaug, Norway (1973)	269		
ammonium nitrate, Ludwigshafen, Germany (1921)	325		
ammonium nitrate, Texas City, USA (1947)	326		
Arendal explosion, Gothenburg, Sweden (1981)	89		
Beek explosion, the Netherlands (1975)	86		
Elkford methane explosion, British Columbia, Canada (1982)	91		
Flixborough explosion, UK (1974)	82		
Kambo grain silo, Norway (1976)	262		
linen dust explosion, Harbin, China (1987)	264		
methane explosions in coal mines	77		
polyethylene dust explosion, Kinston, North Carolina (2003)	272		
pyrotechnics, Enschede, Netherlands (2000)	335		
Sierra Chemical plant, Mustang, Nevada (1998)	327		
silicon dust explosion, Bremanger, Norway (1972)	267		
Stavanger Port silo, Norway (1970)	258		
Stavanger Port silo, Norway (1988)	261		
Taegu gas explosion, South Korea (1995)	96		
West Vanguard explosion, North Sea (1985)	92		
wheat flour explosion, Turin (1785)	256		
acetylene/air mixture, ignition of	14	27	44
acoustic detectors	104		

<u>Index terms</u>]	<u>Links</u>
adiabatic compression	69	347
adiabatic pressure	20	
adiabatic temperature	19	
advance inciting	147	
air-blast atomizers	151	
aircraft engines	145	
aluminum	114	237
aluminum dust explosion, Gullhaug, Norway (1973)	269	
ammonium nitrate	313	
explosions	325	
Ludwigshafen, Germany (1921)	325	
Texas City, USA (1947)	326	
mixture of	314	
AN/FO (explosive)	314	
arcs	294	
area classification	354	
and combustible fluids	360	
direct examples	363	
drawings	360	
examples of	372	
good standard of design and operation	356	
limitations of	355	
management of	357	
objective of	353	
point source method	364	
purpose of	354	
small scale operations	355	
sources and grades of release	358	
Swedish standard	375	
zones	357	
Arendal explosion, Gothenburg, Sweden (1981)	89	
Arrhenius theory	31	

<u>Index terms</u>	<u>]</u>	<u>Links</u>
Atex 100a directive	7	
Atex 118a directive	7	370
atomizers	151	
auto ignition temperatures (AIT)	113	
automatic explosion suppression	145	
design of	147	
of dust explosions	305	
extinguishing agents	306	
optical detection	148	
aviation fuels	361	
В		
Badische Anilin und Soda Fabrik (BASF)	325	
balloons	135	
barriers	132	
blast walls	132	
in controlling pre-compression	133	
in controlling turbulence generation	134	
soft	133	
suppressive	133	
batchoff machines	276	
Beek explosion, the Netherlands (1975)	86	
bituminous coal	307	
blast walls	132	
blast waves	224	
blasting caps	316	
bow shock	252	
break flash	238	
Bremanger, Norway	267	
British Royal Air Force	145	
brush discharges	60	247

<u>Index terms</u>	1	Links	
buildings	136		
Bundesanstalt for Materialprüfung (BAM)	319	323	
Bunsen burner	11		
Bureau of Mines test	323		
burning nests	231		
burning velocity	23	155	209
bursting panels	300		
butane	11		
С			
capacitive circuits	380		
capacitive sparks	50	238	
caps	131		
carbon dioxide	286	307	
catalytic detectors	104		
Category C fluid	368		
cathodic corrosion protection	116		
CENELEC	373	395	401
centrifugal spray generators	151		
Chapman-Jouguet detonation front pressure	27	159	227
chemical industries	3		
Christian Michelsen Institute (CMI)	142		
Christian Michelsen Research (CMR)	142		
Class I fluids	360		
Class II fluids	361		
Class III fluids	361		
classical Arrhenius theory	31		
closed-bomb tests	218		
close-to-laminar flame propagation	209		
coal dust explosions	222		
coal mine explosions	77		

<u>Index terms</u>]	<u>Links</u>
combustible fluids	16	360
combustion	11	
compression waves	226	
computational fluid dynamics (CFD)	141	
connections	102	
construction materials, selection of	348	
continuous grade release	358	
control	123	
corona discharges	59	246
cranes	122	
crank case explosions	168	
cutting burner flame	232	
D		
dampers	111	
Dautriche method	315	
Davy lamp	77	
Davy screens	127	
Davy, Sir Humphrey	77	
decomposition temperature	319	
deflagration	315	
deflagration-to-detonation transition (DDT)	27	227
detonating cap sensitivity test	317	
detonation	25	
arresters	129	
vs. deflagration	315	
dust clouds	226	
measuring properties of	315	
Dautriche method	315	
detonating cap sensitivity test	317	
Trauzl lead block test	318	

<u>Index terms</u>	<u>Links</u>
detonation (Continued)	
sprays/mists	159
diesel engines	164
differential scanning calorimetry (DSC)	183
differential thermal analysis (DTA)	320
diffusion combustion	11
dodecanes	159
drop hammer sensitivity test	321
dry detonation arresters	129
dry static flame traps	127
dust clouds	4
chemistry of	205
close-to-laminar flame propagation in	209
design concepts for electrical apparatuses	392
detonation of	226
explosive concentration ranges of	201
flames in	203
vs. gas/vapor clouds	369
generation of	5
ignitability and explosibility of	200
ignition and combustion properties of	4
ignition curves	243
ignition sources	230
electric sparks	237
electrostatic discharges	237
hot surfaces	233
jets of hot combustion products	250
light radiation	253
mechanical impacts	234
open flames	232
shock waves	252
smoldering nests	231

<u>Index terms</u>	<u>Links</u>
dust clouds (Continued)	
maximum adiabatic explosion pressure for	213
minimizing volumes of	296
minimum ignition energy (MIE)	240
moisture	207
particle size	208
premixed gas flames in	203
turbulent flame propagation in	215
dust deposits	178
accumulation of	6
minimum ignition temperature	182
smoldering nests	231
dust dispersion system	216
dust explosions	197
automatic suppression of	305
case histories	255
aluminum dust, Gullhaug, Norway (1973)	269
barley/oats, Kambo silo plant, Norway (1976)	262
grain dust, Stavanger port silo, Norway (1970)	258
grain dust, Stavanger port silo, Norway (1988)	261
linen dust, Harbin, China (1987)	264
polyethylene dust, Kinston, North Carolina (2003)	272
silicon dust, Bremanger, Norway (1972)	267
wheat flour explosion in Turin (1785)	256
ignition sources	289
electrostatic discharges	294
hot surfaces	292
mechanical impacts	293
open flames and hot gases	291
self-heating	290
smoldering	290
smoldering nests	292

<u>Index terms</u>]	<u>Links</u>
dust explosions (Continued)		
isolating	297	
materials	199	
preventing	286	
by adding inert dust	288	
by adding inert gases to air	286	
by dust concentration outside explosive range	287	
by good housekeeping	307	
primary	228	
secondary	228	
turbulence-driven acceleration of	222	
venting	299	
dust extraction system	373	
dust layers	175	
accumulation of	6	
minimum ignition temperature	181	
dust particles	6	
agglomeration of	200	
influence of inertial forces on	5	
migration of	7	
dust-protected enclosures	394	
dust-tight enclosures	394	
dynamic flame trap	128	
E		
earthing	55	
education	1	
effective ignition source	29	
electric sparks	49	
capacitive	237	
ignition by	115	162
inductive	238	

<u>Index terms</u>	Link
electric sparks (Continued)	
minimizing dust explosion risks from	294
sensitivity tests	323
See also ignition sources	
electrical apparatuses	115
encapsulation	390
flame-proof enclosures	381
increased-safety enclosures	384
intrinsic safety	378
oil-filled enclosures	388
pressurized enclosures	386
sand-filled enclosures	389
electrical ignition sources	119
electrodes	49
electrostatic atomizers	151
electrostatic discharges	237
along surfaces of bulk powder/dust	249
ignition by	115
minimizing dust explosion risks from	294
risks to explosive materials	347
types of	245
See also ignition sources	
Elkford methane explosion, British Columbia, Canada (1982)	91
emergency shut-down systems (BSD)	106
actions and documentation	107
alarms	107
fail-to-safe principle	108
man-machine interface	108
manual activation of	106
purpose of	106
requirements	108
response time rate	107

<u>Index terms</u>]	<u>Links</u>
encapsulation	390	
enclosures	378	
encapsulated	390	
flame-proof	381	
increased-safety	384	
International Protection (IP) code for	393	
intrinsic safety	378	
oil-filled	388	
pressurized	386	
sand-filled	389	
end-of-line flame arresters	129	
endurance burning	131	
Enschede, Netherlands	335	
equation of state	20	
equivalent energy	56	
ethylene/air, ignition of	57	
European Union directives	7	
event tree analysis	405	
exothermal chemical decomposition	347	
expansion ratio	21	
explosion doors	301	
explosion proof flame arresters	129	
explosions	2	
computer simulation models	140	
and design of buildings	136	
hazards in process industries	3	
human factor	8	
minimizing propagation of	124	
primary	203	
suppression systems	145	
venting	138	
explosive atmospheres	7	370

<u>Index terms</u>		<u>Links</u>
explosive clouds	4	
barriers	132	
computer simulation models	140	
generation of	5	
ignition and combution properties of	4	
mitigating	123	
preventing and limiting size of	101	171
explosive gas mixtures	30	51
explosives	313	
accidental explosions	325	
ammonium nitrate, Ludwigshafen, Germany (1921)	325	
ammonium nitrate, Texas City, USA (1947)	326	
pyrotechnics, Enschede, Netherlands (2000)	335	
Sierra Chemical plant, Mustang, Nevada (1998)	327	
chemical composition of	313	
decomposition temperature	319	
definition of	373	
deflagration of	315	
and design of electrical equipment	401	
detonation of	315	
electric spark sensitivity of	323	
hazardous zones	373	
safety considerations in production of	344	
apparatus design	347	
automation and remote process operation	345	
avoidance of accidental ignition	346	
basic rule	344	
explosion protection	345	
quantities of material	346	
safety properties of materials	344	
ten mnemonic rules	350	
written work instructions	349	

<u>Index terms</u>]	<u>Links</u>
explosives (Continued)		
sensitivity to impact	321	
temperature classes	375	
extinguishing agents	306	
F		
factory buildings	136	
failure modes and effects analysis (FMEA)	406	
far field blasts	144	
fault tree analysis	406	
firedamp	43	77
fish meal silo, explosion of	192	
FLACS model	142	
flame arresters	127	
flame propagation	5	
close-to-laminar	209	
laminar	154	
laminar burning	12	
turbulent	155	215
flame speed	23	
flame traps	127	
flame-proof enclosures	117	381
flammability limits	14	
flammable fluids	18	
classification of	18	360
flashpoints	16	
handling of	355	
unclassified	361	
flanges	102	
flashpoints	16	
flash-back-proof detonation foot valves	130	

<u>Index terms</u>]	<u>Links</u>
Flixborough explosion, UK (1974)	82	
flushing method	287	
forced ventilation	110	
friction	234	346
friction sparks	41	42
fuel/air ratios	13	
and explosion pressure	20	
and flammability ranges	14	
G		
gas detection systems	103	
alarms	105	
coverage and location of	104	
multi-sensor	195	
performance of	103	
spray/mist detectors	106	
types of	104	
gas groups	380	
gas leaks, prevention of	101	
gas lighter	11	
gas mixtures	34	
gas/vapor clouds	4	
generation of	5	
ignition and combustion properties of	4	
vs. dust clouds	369	
gas/vapor explosions	6	
case histories	76	
Arendal explosion, Gothenburg, Sweden (1981)	89	
Beek explosion, the Netherlands (1975)	86	
Elkford methane explosion, British Columbia,		
Canada (1982)	91	
Flixborough explosion, UK (1974)	82	

<u>Index terms</u>]	<u>Links</u>
gas/vapor explosions (Continued)		
methane explosions in coal mines	77	
Taegu gas explosion, South Korea (1995)	96	
West Vanguard explosion, North Sea (1985)	92	
combustion	11	
computer simulation models	140	
ignition sources	112	
burning metal particles	114	
electrical sparks	115	
electrostatic discharges	115	
hot surfaces	113	
jet of hot combustion products	117	
light radiation	118	
open flames	113	
thermite reactions	114	
transient hot spots	114	
limiting size of	101	
mitigation of	123	
prevention of	100	
published reviews	81	
Godbert-Greenwald furnace	233	
grades of release	358	366
grain dust explosions	258	
Kambo silo plant, Norway (1976)	262	
Stavanger Port silo, Norway (1970)	258	
Stavanger Port silo, Norway (1988)	261	
See also accidental explosions		
Grandcamp (ship)	326	
Gullhaug, Norway	269	
Н		
halogenated hydrocarbons	131	286

<u>Index terms</u>]	<u>Links</u>
Harbin, China	264	
Hartmann bomb	218	
hazard analysis	405	
hazard and operability studies (HAZOP)	406	
hazard radius	367	
hazard surveys	405	
hazardous areas	354	
hazardous zones	373	
heat generation, rate of	31	
heat loss, rate of	31	
heat of combustion	199	
heating coils	113	
heating, ventilation and airconditioning (HVAC)	109	
hexane	157	
hexanes	159	
Highflyer (ship)	326	
high-frequency electromagnetic waves	117	
hinged explosion doors	301	
hot gases	33	291
hot spots	48	235
hot surfaces	33	
and auto ignition temperatures (AIT)	113	
computer simulation	39	
enclosures	396	
ignition of dust clouds by	233	
ignition of spray/mist clouds by	160	
preventing ignition by	292	
See also ignition sources		
housekeeping	307	
human factor in explosions	8	
human machine interface (HMI)	123	

<u>Index terms</u>]	<u>Links</u>	
hydraulic spray generators	151		
hydrocarbons, combustion of	23		
hydroelectric power stations	169		
hydrogen	27		
hydrogen/air, ignition of	57		
I			
ignition	29		
maximum experimental safe gap (MESG)	63		
mechanical impacts	42		
overview	29		
thermal runaway theory	30		
ignition chamber	71		
ignition sources	29		
controlling	118		
effective	29		
electric sparks	49	115	162
	237	294	
electrical	119		
electrostatic discharges	115	162	237
	294		
explosive gas mixtures	30		
gas/vapor clouds	112		
hot gases	33	291	
hot surfaces	33	113	160
	233	292	
jets of hot combustion products	117		
light radiation	71	253	
mechanical impacts	234	293	
non-electrical	121		
one-electrode discharges	56		

<u>Index terms</u>]	Links	
ignition sources (Continued)			
open flames	33	113	232
	291		
preventing	289		
rapid adiabatic compression	69		
Shockwaves	252		
small burning metal particles	42		
smoldering nests	231	292	
thermite flashes	47	114	
transient hot spots	48	114	
ignition volume	31		
impact energy	43		
increased-safety enclosures	384		
induction time	73		
inductive circuits	380		
inductive sparks	50	238	
inert dust	288		
inert gases	286	297	307
inertial forces, influence of	5		
infrared detectors	104		
Ingersoll-Rand Co.	166		
in-line flame arresters	129		
Institute of Petroleum	16	18	
in-stream instrumentation	103		
insulation materials	113		
International Electrotechnical Commission (IEC)	354	370	393
International Protection (IP) code	393		
intrinsic inerting	286		
intrinsic safety	378		
inventories	405		

<u>Index terms</u>	<u>]</u>	Links	
isolation of dust explosions	297		
iso-octane	157		
J			
JET-A fuel	160		
K			
Kambo silo explosion, Norway (1976)	262		
kerosene	156	157	361
kinetics	206		
Knibyshev region, Russia	187		
L			
laminar burning velocity	12		
laser	253		
lead azide	313		
light radiation	71	253	
lightning	117		
lightning type discharges	249		
limestone	307		
linen dust explosion, Harbin, China (1987)	264		
liquid	130		
liquid droplets	149		
classification of	368		
coalescence of	152		
combustion of	153		
design concepts for electrical apparatuses	392		
ignition of	160		
influence of inertial forces on	5		
migration of	7		
liquid explosives	322		

<u>Index terms</u>]	<u>Links</u>	
liquid static flame traps	127		
local suppression	147		
Ludwigshafen, Germany	325		
lycopodium	209		
M			
Mach-number	28		
Malmö, Sweden	189		
man-machine interface	108		
maximum experimental safe gap (MESG)	63	250	382
mechanical impacts	42		
avoidance of ignition from	346		
heat from	234		
preventing ignition by heat from	293		
mechanical processing	4		
mechanical valves	125		
mechanical ventilation	110		
metal sparks	114		
metallurgical industries	3		
methane explosions	77		
methane/air, ignition of	43	204	
minimum ignition energy (MIE)			
dust clouds	240		
vs., spark energy	49		
sprays/mists	162		
minimum ignition temperatures	38		
computer models	39		
for explosive substances	375		
standard test methods	40		
mists	149		
coalescence of drops in	152		

Index terms	<u>Links</u>
mists (Continued)	
combustion of	153
constant-volume adiabatic explosion pressures in	158
detectors	106
detonation in	159
explosions	149
crank cases	168
hydroelectric power station	169
oil mists	166
formation of	6
generation of	150
ignition sources	160
electric sparks	162
electrostatic discharges	162
hot surfaces	160
laminar flame propagation in	154
turbulent flame propagation in	155
See also sprays	
mitigation	123
moisture, influence on dust clouds	207
molding	399
motivation	9
multi-componennt fuels, ignition of	38
N	
natural ventilation	110
Nd-YAG CW laser	254
net impact energy	43
Netherlands Forensic Science Institute (NFI)	335
nitrated organic compounds	313
nitrogen	286
non-electrical ignition sources	121

<u>Index terms</u>	1	<u>Links</u>	
non-hazardous areas	354	358	
non-suppressive soft barriers	133		
Nordtest fire 106 test	323		
Nusselt type flame	203		
0			
offshore platforms	121		
offshore process modules	140		
oil and natural gas industries	3		
oil mist detectors	106		
oil mist explosion	166		
oil-filed enclosures	388		
one-electrode discharges	56		
open flames	33	113	232
	291		
optical detection systems	148		
oxygen index (OI)	66		
P			
partial inciting	297		
pentane/air mixture	34		
personnel categories	8		
petrochemical industries	3		
petroleum fluids	18		
physical barriers. See barriers			
piping	102		
Pittsburgh bituminous coal	307		
plug flow	287		
point source method	364		
point sources	358		
grades of release	366		

<u>Index terms</u>]	<u>Links</u>	
point sources (Continued)			
hazard radius	367		
identification of	365		
zone categories	367		
polyethylene	206		
polyethylene dust explosion, Kinston, North Carolina (2003)	272		
polyvinylchloride (PVC)	206		
powder layers and deposits	175		
deep dust deposits	178		
dust layers	175		
explosion initiation processes in	184		
explosions in silos	185		
minimum ignition temperature of dust deposits	182		
minimum ignition temperature of dust layers	181		
powder suppressants	307		
pre-compression	133		
pre-ignition pressure	27		
premixed gas flames	203		
premixed gas/vapor and air	11		
detonation of	25		
expansion ratio	21		
flammable concentration ranges for	14		
ignition of	29		
ignition sensitivity of	63		
laminar burning of	12		
maximum pressures	19		
turbulent combustion of	24		
See also gas/vapor explosions			
pressure piling	21	124	133
	382		
pressure variation method	287		
pressure waves	2	144	

<u>Index terms</u>	<u>I</u>	<u>Links</u>
pressurized enclosures	386	399
primary dust explosions	228	
primary explosions	203	
primary explosives	313	
primary grade release	358	
process equipment, minimizing volumes of	296	
process hazard analysis (PHA)	351	
process industries	3	
process safety	1	
process safety management (PSM)	350	
propagating brush discharges	61	248
propane	11	
propane/air, ignition of	43	57
propane/methane mixture	39	
propellants	314	
decomposition temperature	319	
deflagration of	315	
purging	387	
pyrotechnics	314	
decomposition temperature	319	
deflagration of	315	
and design of electrical equipment	401	
disaster in Enschede, Netherlands (2000)	335	
Q		
quartz sand	390	
quenching distance (QD)	51	63
quenching tubes	303	
R		
radiation	71	118

<u>Index terms</u>	<u>Links</u>
radiative heat transfer	204
radioactive radiation	73
rapid adiabatic compression	69
rare gases	286
Reina del Paciflco (ship)	168
replacement method	287
reversible vent covers	302
Reynolds numbers	155
risk analysis	405
event tree analysis	405
failure modes and effects analysis (FMEA)	406
fault tree analysis	406
hazard and operability studies (HAZOP)	406
hazard surveys	405
plant audits	408
rotating machinery	103
rubber compounding	274
S	
S.E. Fireworks (SEF)	335
safety	1
safety audits	408
safety management	9
sand-filed enclosures	389
secondary dust explosions	228
secondary grade release	358
sectioning	297
self-heating	290
ship engines	168
shock absorbers	129

<u>Index terms</u>	<u>]</u>	<u>Links</u>
Shockwaves	252	
detonation of premixed gas/vapor and air	26	
detonation of sprays/mists	159	
generation of	69	
simulation of	144	
Sierra Chemical plant explosion, Mustang, Nevada (1998)	327	
silicon dust explosion, Bremanger, Norway (1972)	267	
silos, explosions in	185	
excessive self-heating	194	
fish meal silo, Norway (1992)	192	
Knibyshev region, Russia (1987-89)	187	
Malmö, Sweden (1989)	189	
prevention of	194	
Stavanger, Norway (1985)	185	
simple enclosures	392	
small scale operations	355	
smoldering	290	
smoldering nests	231	292
soft barriers	133	
hazards	136	
materials	135	
soft triggered barriers	133	
solid explosives	322	
spark energy	49	238
sparks	42	114
sprays	149	
coalescence of drops in	152	
combustion of	153	
constant-volume adiabatic explosion pressures in	158	
detectors	106	
detonation in	159	
explosions	149	

Index terms]	<u>Links</u>
sprays (Continued)		
crank cases	168	
hydroelectric power station	169	
preventing and mitigating	171	
vapor cloud	166	
generation of	6	151
ignition sources	160	
electric sparks	162	
electrostatic discharges	162	
hot surfaces	160	
laminar flame propagation in	154	
turbulent flame propagation in	155	
See also mists		
static electricity	347	
static flame traps	127	
Stavanger Port silo explosions, Norway	185	258
steel	114	
stirred tank method	287	
superheated steam	307	
suppressants	131	306
suppressive barriers	133	
T		
Taegu gas explosion, South Korea (1995)	96	
Teflon	301	
temperature classes	375	379
thermal explosion theory	196	
thermal radiation	204	
thermal runaway theory	30	
thermite flashes	47	
generation of	42	
ignition of dust clouds by	237	

<u>Index terms</u>	<u>I</u>	<u>Links</u>
thermite flashes (Continued)		
ignition of gas.vapor clouds by	114	
thermodynamics	205	
through-mixing method	287	
thunderstorms	117	
titanium sparks	44	
TNO Prins Maurits Laboratory (TNO-PML)	335	
TNT, casting of	375	
tracer gases	194	
transient hot spots	48	114
Trauzl lead block test	318	
tribo-electric charging	115	
turbulence	5	134
turbulent combustion	24	
turbulent flame propagation	215	
T.		
U	222	
U.S. Bureau of Mines test	323	
ullage space	362	
unclassifed flammable fluids	361	
V		
vacuum cleaners	309	
valves	103	125
vapor cloud explosions	166	
vent covers	140	300
vent ducts	303	
Ventex valves	125	
ventilation systems	109	
documentation and modification	112	
forced/mechanical	110	

<u>Index terms</u>		<u>Links</u>
ventilation systems (Continued)		
HVAC	109	
natural	110	
venting	138	
dust explosions	299	
potential hazards	302	
vessels	102	
volume explosion flame arresters	129	
\mathbf{W}		
walls	370	392
water curtains	133	
water vapor	286	
weak walls	132	
welding torch flame	233	
West Pharmaceutical Services Inc. (Kinston, North Carolina)	272	
accidental explosion	277	
accumulation and ignition of dust clouds	283	
analysis of explosion	280	
company and process	273	
facility damage and relocation of reproduction	280	
fatalities and injuries	279	
fires following explosion	278	
housekeeping standards	276	
location and layout of plant	273	
recommendations	284	
root causes of explosion	283	
rubber compounding process	274	
West Vanguard explosion, North Sea (1985)	92	
wheat bran silo explosion, Malmö, Sweden (1989)	189	
wheat flour explosion, Turin (1785)	256	

<u>Index terms</u>	<u>Links</u>		
Z			
Zener diodes	380		
zinc powder	202		
zones	354		
definitions of	357	370	373
and grade of release	359		